1.3 理想流体的流动 本节重点: 掌握理想流体模型; 理解理想流体、流线、流管等物理概念; 掌握理想流体的稳定流动的连续性原理;

Slides:



Advertisements
Similar presentations
7.4 热气体的流动 炉内气体流动的特征: ( 1 )炉内气体为热气体。 ( 2 )受大气浮力影响。
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
目 录: 第一章 液体的基本性质 第二章 水流运动的基本原理 第三章 水头损失 第四章 静水压力计算
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
3.4 空间直线的方程.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
第十六章 动量守恒定律 第4节 碰 撞.
第二章 血液的流动(共6讲) 第一节 理想流体的定常流动 第二节 血液的层流.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
医用物理学.
云南省丽江市古城区福慧学校 执教者 :和兆星.
系统 控制体 输运公式 1. 系统(system)——由确定的流体质点组成的流体团或流体体积V(t)。
2.3 液体动力学基础 本节主要讨论液体的流动状态、运动规律、能量转换以及流动液体与固体壁面的相互作用力等问题。
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
习题六 1. 判断下列流场是否有旋?并分别求出其流线、计算oxy平面的单位圆周上的速度环量。 柱坐标 [解] 计算旋度 计算流线 速度环量
探索三角形相似的条件(2).
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
乒乓球回滚运动分析 交通902 靳思阳.
§7.4 波的产生 1.机械波(Mechanical wave): 机械振动在介质中传播过程叫机械波。1 2 举例:水波;声波.
第一章 流体流动过程及 流体输送设备.
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
第三章 辐射 学习单元2 太阳辐射.
3.1 习 题(第三章)
看一看,想一想.
流体力学基础 流体静力学 连续性原理 伯努利方程.
过程自发变化的判据 能否用下列判据来判断? DU≤0 或 DH≤0 DS≥0.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
实数与向量的积.
必修1 第四章 牛顿第二定律的应用 --瞬时性问题 必修1 第四章 牛顿第二定律的应用--瞬时性问题
(Chapter 11 Fluid Mechanics)
2.3.4 平面与平面垂直的性质.
§5.3万有引力定律 一.历史的回顾 1.地心说和本轮理论(C.Ptolemy,约前150)
第三章、流体的流动 山东大学精品课程 医学物理学.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
流体佯谬 由于牛顿力学的巨大成功,人们对牛顿确定的三大定律深信不疑,奉之为金科玉律,然而在生活中,我们常常会惊异的发现流体表现出一些意想不到的效应。例如:
大学物理教学研讨 流体力学.
第15章 量子力学(quantum mechanics) 初步
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
直线和圆的位置关系 ·.
空间平面与平面的 位置关系.
第二章 均匀物质的热力学性质 基本热力学函数 麦氏关系及应用 气体节流和绝热膨胀.
高中数学选修 导数的计算.
热力学第一定律的应用 --理想气体等容过程、定容摩尔热容 --理想气体等压过程 、定压摩尔热容.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
实验二 基尔霍夫定律 510实验室 韩春玲.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
3.2 平面向量基本定理.
制作者:王翠艳 李晓荣 o.
带电粒子在匀强磁场中的运动 扬中市第二高级中学 田春林 2018年11月14日.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
位似.
液压传动基础知识 深圳职业技术学院 主讲人:朱梅.
Presentation transcript:

1.3 理想流体的流动 本节重点: 掌握理想流体模型; 理解理想流体、流线、流管等物理概念; 掌握理想流体的稳定流动的连续性原理; 掌握贝努利方程的原理;

一.基本概念: 流体: 具有流动性的液体和气体; 流体动力学: 研究流体的运动规律以及流体与其他物体之间相互作用的力学; 二.流体动力学的应用: 生物体液和氧分的输送,动物体内血液的循环,土壤中水分的运动,农田排灌、昆虫迁飞;

§1.3.1 理想流体的稳定流动 一.基本概念 1.流体的粘滞性: 2.流体的可压缩性: 3.理想流体模型: §1.3.1 理想流体的稳定流动 一.基本概念 1.流体的粘滞性: 实际流体在流动时.其内部有相对运动的相邻两部分之间存在类似两固体相对运动时存在的摩擦阻力(内摩擦力),流体的这种性质称为粘滞性。 2.流体的可压缩性: 实际流体在外界压力作用下、其体积或密度会发生变化,即具有可压缩性; 3.理想流体模型: 绝对不可压缩、没有粘滞性的流体叫做理想流体; 一般情况下,密度不发生明显变化的气体或者液体、粘滞性小的流体均可看成理想流体.

二.流体的运动形式: 1. 一般流动形式: 2. 定常流动: 通常流体看做是由大量流体质点所组成的连续介质。 流动的复杂性:一般情况流体运动时,由于流体各部分可以有相对运动,各部分质点的流动速度是空间位置的函数,又是时间t的函数 2. 定常流动: 流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动方式称为定常流动,也称为稳定流动 是一种理想化的流动方式。 如:水龙头的涓涓细流、植物导管、动物毛细血管;

三.流线、流管 流线:为了形象地描述定常流动的流体 2.流管:流体内部,通过某一个截面的流线围成的管状空间; 而引入的假想的直线或曲线 流线上任意点的切线方向就是流体质点流经该点的速度方向 稳定流动时,流线的形状和分布不随时间变化,且流线与流体质点的运动轨迹重合; 流线的疏密程度可定性地表示流体流速的大小; 流线不相交; 2.流管:流体内部,通过某一个截面的流线围成的管状空间; 流体质点不会任意穿出或进入流管 ;(与实际管道相似) 流体可视为由无数个稳定的流管组成,分析每个流管中流体的运动规律,是掌握流体整体运动规律的基础;

四.连续性原理 1. 推导过程: 假设: ①.取一个截面积很小的细流管,垂直于流管的同一截面上的各点流速相同; ②.流体由左向右流动 ; ③.流体具有不可压缩性 ; ④.流体质点不可能穿入或者穿出流管 ; ⑤.在一个较短的时间t内,流进流管的流体质量等于流出流管的流体质量(质量守恒),即:

体积流量:表示单位时间内流过任意截面S的流体体积,称为体积流量,简称流量,用QV表示,单位为m3/s. 2. 理想流体的连续性方程(连续性原理、流量方程): 体积流量:表示单位时间内流过任意截面S的流体体积,称为体积流量,简称流量,用QV表示,单位为m3/s. 连续性原理:流体在同一细流管中作稳定流动时,通过任一截面S的体积流量保持不变。 推广,对于不可压缩的实际流体,任意流管、真实导流管、流体管道都满足连续性原理。 如果同一截面上流速相同,不可压缩的流体在流管中做稳定流动时流体的流速与流管的截面积S成反比,即截面大处流速小,狭窄处流速大。 如:河水的流动

补充例题 有一条灌溉渠道,横截面是梯形,底宽2m,水面宽4m,水深1m,这条渠道再通过两条分渠道把水引到田间,分渠道的横截面也是梯形,底宽1m,水面宽2m,水深0.5m,如果水在两条渠道内的流速均为0.2m/s,求水在总渠道中的流速?

§1.3.3 伯努利方程及其应用 伯努利方程:理想流体在重力场中作稳定流动时,能量守衡定律在流动液体中的表现形式。 §1.3.3 伯努利方程及其应用 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体作稳定流动时的基本方程,对于确定流体内部各处的压力和流速有很大的实际意义、在水利、造船、航空等部门有着广泛的应用。 伯努利方程:理想流体在重力场中作稳定流动时,能量守衡定律在流动液体中的表现形式。

一. 伯努利方程的推导: 稳定流动的理想流体中,忽略流体的粘滞性,任意细流管中的液体满足能量守恒和功能原理! 机械能的增量: 设:流体密度,细流管中分析一段流体a1 a2 : a1处:S1,1,h1, p1 a2处:S2,2,h2, p2 经过微小时间t后,流体a1 a2 移到了b1 b2, 从整体效果看,相当于将流体 a1 b1 移到了a2 b2, 设a1 b1段流体的质量为m,则: 机械能的增量:

功能原理: 系统受到非保守力做功,系统机械能的增量等于非保守力对系统作的功; 外界对系统作的功? 受力分析=端面压力+侧壁压力

含义:对于理想流体作稳定流动,在同一流管中任一处,每单位体积流体的动能、势能和该处压强之和是一个恒量。 二. 对于同一流管的任意截面,伯努利方程: 含义:对于理想流体作稳定流动,在同一流管中任一处,每单位体积流体的动能、势能和该处压强之和是一个恒量。 伯努利方程,是理想流体作稳定流动时的基本方程; 对于实际流体,如果粘滞性很小,如:水、空气、酒精等,可应用伯努利方程解决实际问题; 对于确定流体内部各处的压力和流速有很大的实际意义、在水利、造船、航空等部门有着广泛的应用。

补充例题, 水管里的水在压强为p=4×105 Pa的作用下流入房间,水管的内直径为2.0 cm,管内水的流速为4 m/s。引入到5 m高处二楼浴室的水管,内直径为1.0 cm, 试求浴室水管内水的流速和压强? (已知水的密度为=103 kg/m3)。

1.3.4. 伯努利方程的应用 一.水平流管的伯努利方程: 在水平流动的流体中,流速大的地方压强小;流速小的地方压强大。“速大压小” 在粗细不均匀的水平流管中,根据连续性原理,管细处流速大,管粗处流速小,因而管细处压强小,管粗处压强大; 如:水流抽气机、喷雾器、内燃机的汽化器的基本原理都基于此;

生活中“速大压小”的实例: 在海洋中平行逆向航行的两艘大轮船,相互不能靠得太近,否则就会有相撞的危险,为什么? 逆流航行的船只行到水流很急的岸边时,会自动地向岸靠拢; 汽车驶过时,路旁的纸屑常被吸向汽车; 简单的实验:用两张窄长的纸条,相互靠近,用嘴从两纸条中间吹气,会发现二纸条不是被吹开而是相互靠拢,就是“速大压小”的道理。 打开的门窗,有风吹过,门窗会自动的闭合,然后又张开;

6.飞机的机翼的翼型使得飞行中前面的空气掠过机翼向后时,流经机翼上部的空气要通过的路程大于流经机翼下部的空气通过的路程,因此上部空气流速大于下部空气的流速,上部空气对机翼向下的压力就会小于下部空气对机翼向上的压力,从而产生升力 ;

应用实例1. 水流抽气机、喷雾器 空吸作用:当流体流速增大时压强减小,产生对周围气体或液体的吸入作用; 水流抽气机、喷雾器就是根据空吸作用的原理(速度大、压强小)设计的。

流速: 体积流量: 应用实例2.汾丘里流量计 只要读出两个竖管的高度差,就可以测量流速和流量 汾丘里管:特制的玻璃管,两端较粗,中间较细,在较粗和较细的部位连通着两个竖直细管。 汾丘里管水平接在液体管道中可以测定液体的流量; 流速: 只要读出两个竖管的高度差,就可以测量流速和流量 体积流量:

托里拆利定律:忽略粘滞性,任何液体质点从小孔中流出的速度与它从h高度处自由落下的速度相等; 应用实例3. 小孔流速:射流速率 敞口的大液槽内离开液面h处开一小孔,液体密度为,液面上方是空气,在液槽侧面小孔处压强为大气压p0, 求小孔处的液体流速? 注:S1>>S2 由于液槽中液面下降很慢,可以看成是稳定流动,把液体作为理想流体; 托里拆利定律:忽略粘滞性,任何液体质点从小孔中流出的速度与它从h高度处自由落下的速度相等;

应用实例4. 文特里管:可串接到管道中测定气体流速的装置; H S1 S2 曲管压强计中盛水银,当粗管和细管横截面S1和S2及水银柱的高度差H已知时,求粗管中气体的流速。 是气体的密度 汞是水银的密度

P42, 图1-41 应用实例5. 皮托管:常用的流速测定装置; E 驻点:当流体遇到障碍物受阻时,在障碍物前会有一点,该点流体静止不动,故称驻点; P42, 图1-41

§1.4 粘滞流体的流动 粘滞流体:如植物组织中的水分,人体及动物体内的血液以及甘油、蓖麻油。 一. 牛顿粘滞定律 粘滞系数 层流:实际流体在流动时,同一横截面上各点流速并不相同,管中轴心处流速最大,越接近管壁,流速越小,在管壁处流速为零。这种各层流体流速有规则逐渐变化的流动形式,称为层流; 每一层为与管同轴的薄圆筒,每一层流速相同,各层之间有相对运动但不互相混杂,管道中的流体没有横向的流动。 (流速小时呈现的流动形式:河道、圆形管道)

粘滞力: 粘滞力和哪些因素有关? 流体内相邻两层内摩擦力的大小: 与两流层的接触面积大小有关; 还与两流层间速度变化的快慢有关; 粘滞流体在流动中各层的流速不同,相邻两流层之间有相对运动,互施摩擦力,快的一层给慢的一层以向前的拉力;慢的一层则给快的一层以向后的阻力,这种摩擦力称为内摩擦,又称粘滞力; 粘滞力和哪些因素有关? 流体内相邻两层内摩擦力的大小: 与两流层的接触面积大小有关; 还与两流层间速度变化的快慢有关;

提示:交纸质作业!! 作业:P57页 思考题:1-4 练习题: 1-8,1-9,1-10,1-11,1-12