第2课时 对数的运算.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
大南海文化園區 (國立歷史博物館 -初期計畫) 簡介
Chapter 6 竞争与合作战略 成本领先战略 差异化战略 集中化战略 合作战略 竞争优势分析.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
18.2一元二次方程的解法 (公式法).
第二十一章 代数方程 复习课(一).
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
10.2 立方根.
15.2 分式的运算 分式的乘除 第1课时 第十五章 分式 案例作者:浙江省衢州兴华中学 刘 芳
盐对盐敏感性高血压大鼠的影响 指导老师:汤必奎 学生姓名:常明芳 孙艳婷 潘婷 王锦希 刘明亮 蒋宁.
《高等数学》(理学) 常数项级数的概念 袁安锋
第十一章 理气剂.
1.1.2四种命题 1.1.3四种命题间的相互关系.
第三节 固精缩尿止带药 1.特点:酸涩收敛,主归肾、膀胱经。 2.功效:固精、缩尿、止带。兼补肾。
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
2.2.1 对数与对数运算 第一课时 对 数.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
课前探究: 给定一个角 , 角 的终边与角 的终边有什么关系?它们的三角函数之间有什么关系?
面向对象建模技术 软件工程系 林 琳.
导数的基本运算.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
高等数学 西华大学应用数学系朱雯.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第一章 函数与极限.
细心的观察! 大胆的提出问题和想法! 多多的思考! 勇于去实践! 那就是一个成功和快乐的你!.
计算.
6.4不等式的解法举例(1) 2019年4月17日星期三.
课题:1.5 同底数幂的除法.
第四章 四边形性质探索 第五节 梯形(第二课时)
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
人教版高一数学上学期 第一章第四节 绝对值不等式的解法(2)
八年级 下册 16.1 二次根式(2) 湖北省通山县教育局教研室 袁观六.
1.2 有理数 第1课时 有理数 伏家营中学 付宝华.
第三单元 第2课 实验 一元函数的积分 实验目的:掌握matlab求解有关不定积分和定积分的问题,深入理解定积分的概念和几何意义。
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第二章 第六节 对数与对数函数.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
一元二次不等式解法(1).
3.2.2 复数代数形式的乘除运算.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
加减消元法 授课人:谢韩英.
三角 三角 三角 函数 余弦函数的图象和性质.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
4.2 同角三角函数的基本关系 及诱导公式.
Presentation transcript:

第2课时 对数的运算

【课标要求】 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算. 2.了解换底公式,能用换底公式将一般对数化为自然对数或常用对数. 【核心扫描】 1.利用对数的运算性质进行对数运算.(重点) 2.利用换底公式解题.(难点) 3.对数运算性质与指数运算性质.(易混点)

logaM+logaN. logaM - logaN nlogaM

[规律方法] 1.对于同底的对数的化简,常用方法是: (1)“收”,将同底的两对数的和(差)收成积(商)的对数. (2)“拆”,将积(商)的对数拆成对数的和(差). 2.对数式的化简,求值一般是正用或逆用公式.要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.

[规律方法] 解对数应用题的一般步骤为: (1)理解题意,弄清各字母的含义 ;(2)恰当地设未知数,建立对数模型;(3)利用运算性质以及换底公式求解对数模型;(4)还原为实际问题,归纳结论.

【活学活用3】 里氏震级M的计算公式为:M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.

方法技巧 巧用辅助量化指数式为对数式 对数的概念实质上是给出了对数式与指数式间的关系,对此内容的考查往往是依据指数式与对数式的互化进行求值.如果条件涉及指数幂的连等式时,常引入辅助变量,易于沟通指对数间的关系,简化求解过程.

[题后反思] 1.巧妙引入辅助量k,顺利完成指数与对数的转化是解题的关键. 2.注意分类讨论思想的应用以及logab·logba=1的应用.

解析 根据对数的运算性质知,C正确. 答案 C

课堂小结 1.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简. 2.运用对数的运算性质应注意: (1)在各对数有意义的前提下才能应用运算性质. (2)根据不同的问题选择公式的正用或逆用. (3)在运算过程中避免出现以下错误: ①logaNn=(logaN)n,②loga(MN)=logaM·logaN, ③logaM±logaN=loga(M±N).