第4章 时变电磁场.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
第七章 时变电磁场 主 要 内 容 位移电流、麦克斯韦方程、边界条件、位函数、能流密度矢量、正弦电磁场、复能流密度矢量 1. 位移电流
§3.4 空间直线的方程.
3.4 空间直线的方程.
第4章 时变电磁场 4.1 全电流定律 4.2 法拉第定律 4.3 麦克斯维方程组 4.4 时谐电磁场 4.5 时变场的能量
第5章 动态电磁场与电磁波.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
一 电势 B点电势 A点电势, 令 令.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
§1.3 麦克斯韦方程组 Maxwell’s equations 电磁感应定律 位移电流 麦克斯韦方程组 洛仑兹力
计算机数学基础 主讲老师: 邓辉文.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
看一看,想一想.
Partial Differential Equations §2 Separation of variables
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
第六章 时变电磁场和平面电磁波 §6.1 时谐电磁场的复数表示 §6.2 复数形式麦克斯韦方程组
作业 P152 习题 复习:P 预习:P /5/2.
激光器的速率方程.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第二章 电磁场基本方程 §2.1 静态电磁场的基本定律和基本场矢量 §2.2 法拉弟电磁感应定律和全电流定律 §2.3 麦克斯韦方程组
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
第一章 电磁现象的普遍规律(6) § 1.6 复习 教师姓名: 宗福建 单位: 山东大学物理学院 2015年10月09日
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第6章 均匀平面波的反射与透射.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
§6 介质中的麦克斯韦方程组 介质的电磁性质方程
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
2.5.3 功率三角形与功率因数 1.瞬时功率.
Presentation transcript:

第4章 时变电磁场

本章内容 4.1 波动方程 4.2 电磁场的位函数 4.3 电磁能量守恒定律 4.4 惟一性定理 4.5 时谐电磁场

4.1 波动方程 在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒质,则有 同理可得

4.2 电磁场的位函数 讨论内容 位函数的定义 位函数的性质 位函数的规范条件 位函数的微分方程

引入位函数的意义 引入位函数来描述时变电磁场,使一些问题的分析得到简化。 位函数的定义

位函数的不确定性 满足下列变换关系的两组位函数 和 能描述同一个电磁场问题。 为任意可微函数 即 也就是说,对一给定的电磁场可用不同的位函数来描述。 不同位函数之间的上述变换称为规范变换。 原因:未规定 的散度。

位函数的规范条件 造成位函数的不确定性的原因就是没有规定 的散度。利用位函数的不确定性,可通过规定 的散度使位函数满足的方程得以简化。 在电磁理论中,通常采用洛仑兹条件,即 除了利用洛仑兹条件外,另一种常用的是库仑条件,即

位函数的微分方程

同样

说明 应用洛仑兹条件的特点:① 位函数满足的方程在形式上是对称 的,且比较简单,易求解;② 矢量位只决定于J,标 量位只决定于ρ,这对求解方程特别有利。只需解出A,无需 解出 就可得到待求的电场和磁场。 电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位A和标量位 的解也不相同,但最终 得到的电磁场矢量是相同的。 问题 若应用库仑条件,位函数满足什么样的方程? 具有什么特点?

4.3 电磁能量守恒定律 讨论内容 电磁能量及守恒关系 坡印廷定理 坡印廷矢量

电磁能量及守恒关系 电场能量密度: 磁场能量密度: 电磁能量密度: 空间区域V中的电磁能量: 特点:当场随时间变化时,空间各点的电磁场能量密度也要随 时间改变,从而引起电磁能量流动。 电磁能量守恒关系: 进入体积V的能量=体积V内增加的能量+体积V内损耗的能量

坡印廷定理 表征电磁能量守恒关系的定理 微分形式: 积分形式: —— 单位时间内体积V 中所增加 的电磁能量。 其中: —— 单位时间内电场对体积V中的电流所做的功; 在导电媒质中,即为体积V内总的损耗功率。 —— 通过曲面S 进入体积V 的电磁功率。

推证 由 将以上两式相减,得到 再利用矢量恒等式:

在线性和各向同性的媒质中,当参数都不随时间变化时,则有 坡印廷定理的微分形式 在任意闭曲面S 所包围的体积V上,对上式两端积分,并应用散度定理,即可得到坡印廷定理的积分形式 物理意义:单位时间内,通过曲面S 进入体积V的电磁能量等于 体积V 中所增加的电磁场能量与损耗的能量之和。

坡印廷矢量(电磁能流密度矢量) 描述时变电磁场中电磁能量传输的一个重要物理量 定义: ( W/m2 ) 物理意义: 的方向 —— 电磁能量传输的方向 的大小 —— 通过垂直于能量传输方 向的单位面积的电磁功率

例4.3.1 同轴线的内导体半径为a 、外导体的内半径为b,其间填充均匀的理想介质。设内外导体间的电压为U ,导体中流过的电流为I 。(1)在导体为理想导体的情况下,计算同轴线中传输的功率;(2)当导体的电导率σ为有限值时,计算通过内导体表面进入每单位长度内导体的功率。 同轴线

解:(1)在内外导体为理想导体的情况下,电场和磁场只存在于内外导体之间的理想介质中,内外导体表面的电场无切向分量,只有电场的径向分量。利用高斯定理和安培环路定理,容易求得内外导体之间的电场和磁场分别为 内外导体之间任意横截面上的坡印廷矢量

电磁能量在内外导体之间的介质中沿轴方向流动,即由电源流向负载,如图所示。 同轴线中的电场、磁场和坡印廷矢量 (理想导体情况) 穿过任意横截面的功率为

(2)当导体的电导率σ为有限值时,导体内部存在沿电流方向的电场 根据边界条件,在内导体表面上电场的切向分量连续,即 因此,在内导体表面外侧的电场为 内 同轴线中的电场、磁场和坡印廷矢量 (非理想导体情况) 磁场则仍为 内导体表面外侧的坡印廷矢量为

由此可见,内导体表面外侧的坡印廷矢量既有轴向分量,也有径向分量,如图所示。进入每单位长度内导体的功率为 同轴线中的电场、磁场和坡印廷矢量 (非理想导体情况) 式中 是单位长度内导体的电阻。由此可见,进入内导体中功率等于这段导体的焦耳损耗功率。 以上分析表明电磁能量是由电磁场传输的,导体仅起着定向引导电磁能流的作用。当导体的电导率为有限值时,进入导体中的功率全部被导体所吸收,成为导体中的焦耳热损耗功率。

4. 4 惟一性定理 惟一性问题 在分析有界区域的时变电磁场问题时,常常需要在给定的初始条件和边界条件下,求解麦克斯韦方程。那么,在什么定解条件下,有界区域中的麦克斯韦方程的解才是惟一的呢?这就是麦克斯韦方程的解的惟一问题。 惟一性定理的表述 在以闭曲面S为边界的有界区域V 内, 如果给定t=0 时刻的电场强度和磁场强度 的初始值,并且在 t  0 时,给定边界面S 上的电场强度的切向分量或磁场强度的切向分量,那么,在 t > 0 时,区域V 内的电磁场由麦克斯韦方程惟一地确定。

惟一性定理的证明 利用反证法对惟一性定理给予证明。假设区域内的解不是惟一的,那么至少存在两组解 、 和 、 满足同样的麦克斯韦方程,且具有相同的初始条件和边界条件。 令 则在区域V 内 和 的初始值为零;在边界面S 上电场强度 的切向分量为零或磁场强度 的切向分量为零,且 和 满足麦克斯韦方程

根据坡印廷定理,应有 根据 和 的边界条件,上式左端的被积函数为 所以 由于场的初始值为零,将上式两边对 t 积分,可得

上式中两项积分的被积函数均为非负的,要使得积分为零,必有 即 (证毕) 惟一性定理指出了获得惟一解所必须满足的条件,为电磁场 问题的求解提供了理论依据,具有非常重要的意义和广泛的 应用。

4. 5 时谐电磁场 时谐电磁场的复数表示 复矢量的麦克斯韦方程 复电容率和复磁导率 亥姆霍兹方程 时谐场的位函数 平均能流密度矢量

4.5.1 时谐电磁场的复数表示 时谐电磁场的概念 如果场源以一定的角频率随时间呈时谐(正弦或余弦)变化,则所产生电磁场也以同样的角频率随时间呈时谐变化。这种以一定角频率作时谐变化的电磁场,称为时谐电磁场或正弦电磁场。 研究时谐电磁场具有重要意义 在工程上,应用最多的就是时谐电磁场。广播、电视和通信 的载波等都是时谐电磁场。 任意的时变场在一定的条件下可通过傅里叶分析方法展开为不 同频率的时谐场的叠加。

 时谐电磁场的复数表示 时谐电磁场可用复数方法来表示,使得大多数时谐电磁场问题的分析得以简化。   设    是一个以角频率 随时间t 作正弦变化的场量,它可以是电场和磁场的任意一个分量,也可以是电荷或电流等变量,它与时间的关系可以表示成 实数表示法或 瞬时表示法 式中的A0为振幅、 为与坐标有关的相位因子。 利用三角公式  复数表示法 其中 复振幅 空间相位因子 时间因子

照此法,矢量场的各分量Ei(i 表示x、y 或 z)可表示成 各分量合成以后,电场强度为 复矢量 有关复数表示的进一步说明 复数式只是数学表示方式,不代表真实的场。 真实场是复数式的实部,即瞬时表达式。

例4.5.1 将下列场矢量的瞬时值形式写为复数形式 (1) (2) 解:(1)由于 所以

(2)因为 所以 故

例4.5.2 已知电场强度复矢量 其中kz和Exm为实常数。写出电场强度的瞬时矢量 解

4.5.2 复矢量的麦克斯韦方程 以电场旋度方程 为例,代入相应场量的矢量,可得 将 、 与 交换次序,得 上式对任意 t 均成立。令 t=0 ,得 令ωt=π/2 ,得 即

— 从形式上讲,只要把微分算子 用 代替,就可以把时谐电磁场的场量之间的关系,转换为复矢量之间关系。因此得到复矢量的麦克斯韦方程 从形式上讲,只要把微分算子 用 代替,就可以把时谐电磁场的场量之间的关系,转换为复矢量之间关系。因此得到复矢量的麦克斯韦方程 — 略去“.”和下标m

4.5.3 复电容率和复磁导率  实际的介质都存在损耗: 导电媒质——当电导率有限时,存在欧姆损耗。 电介质——受到极化时,存在电极化损耗。 磁介质——受到磁化时,存在磁化损耗。 损耗的大小与媒质性质、随时间变化的频率有关。一些媒质 的损耗在低频时可以忽略,但在高频时就不能忽略。 导电媒质的等效介电常数 对于介电常数为 、电导率为 的导电媒质,有 其中c=  -jσ/ω、称为导电媒质的等效介电常数。

电介质的复介电常数 对于存在电极化损耗的电介质,有 ,称为复介电常数或复电容率。其虚部为大于零的数,表示电介质的电极化损耗。在高频情况下,实部和虚部都是频率的函数。 同时存在极化损耗和欧姆损耗的介质 对于同时存在电极化损耗和欧姆损耗的电介质,复介电常数为 磁介质的复磁导率 对于磁性介质,复磁导率数为 ,其虚部为大于零的数,表示磁介质的磁化损耗。

损耗角正切 工程上通常用损耗角正切来表示介质的损耗特性,其定义为复介电常数或复磁导率的虚部与实部之比,即有 电介质 导电媒质 磁介质 导电媒质导电性能的相对性 导电媒质的导电性能具有相对性,在不同频率情况下,导电媒质具有不同的导电性能。 —— 弱导电媒质和良绝缘体 —— 一般导电媒质 —— 良导体

4.5.4 亥姆霍兹方程 在时谐时情况下,将 、 ,即可得到复矢量的波动方程,称为亥姆霍兹方程。 瞬时矢量 复矢量 理想介质 导电媒质

4.5.5 时谐场的位函数 在时谐情况下,矢量位和标量位以及它们满足的方程都可以表示成复数形式。 瞬时矢量 复矢量 洛仑兹条件 达朗贝尔方程

4.5.6 平均能流密度矢量

例4.5.4 已知无源的自由空间中,电磁场的电场强度复矢量为       ,其中k 和 E0 为常数。求:(1)磁场强度复矢量 ;(2)瞬时坡印廷矢量 ;(3)平均坡印廷矢量 。 解:(1)由        得 (2)电场和磁场的瞬时值为

瞬时坡印廷矢量为 (3)平均坡印廷矢量为 或直接积分,得

练习:已知截面为 的矩形金属波导中电磁场的复矢量为 式中H0 、ω、β、μ都是常数。试求:(1)瞬时坡印廷矢量; (2)平均坡印廷矢量。 解:(1) 和 的瞬时值为

所以瞬时坡印廷矢量 (2)平均坡印廷矢量