第三节 协方差及相关系数 协方差 相关系数 课堂练习 小结 布置作业.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第四章 随机变量的数字特征 随机变量的分布是对随机变量的一种完整的描述,知道随机变量的分布就全都知道随机变量的所有特征。然后随机变量的概率分布往往不容易求得的。 随机变量的这些统计特征通常用数字表示的。这些用来描述随机变量统计性的数字称为随机变量的数字特征。其中最重要的是数学期望(均值)和方差二种。
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
第四章 随机变量的数字特征 主讲教师:董庆宽 副教授 研究方向:密码学与信息安全
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
课标教材下教研工作的 实践与思考 山东临沂市教育科学研究中心 郭允远.
第四章 随机变量的数字特征 第一节 数学期望 第二节 方差 第三节 协方差及相关系数 第四节 矩、协方差矩阵.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
第四章 随机变量的数字特征 §4 协方差及相关系数 协方差的定义 协方差的性质 相关系数的定义 相关系数的性质.
概率论与数理统计模拟题(3) 一.填空题 3且 1.对于任意二事件A 和 B,有P(A-B)=( )。 2.设 已知
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
第一章.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
可降阶的高阶方程 一、 型的微分方程 二、不显含未知函数的方程 三、不显含自变量的方程.
第四章 随机变量的数字特征 主讲教师:董庆宽 副教授 研究方向:密码学与信息安全
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第七章 参数估计 7.3 参数的区间估计.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第四章 随机变量的数字特征 我们知道,随机变量的分布列或概率密度,全面地描述了随机变量的统计规律.但在许多实际问题中,这样的全面描述并不使人感到方便. 已知一只母鸡的年产蛋量是一个随机变量,如果要比较两个品种的母鸡的年产蛋量,通常只要比较这两个品种的母鸡的年产蛋量的平均值就可以了.平均值大就意味着这个品种的母鸡的产蛋量高.如果不去比较它们的平均值,而只看它们的分布列,虽然全面,却使人不得要领,既难以掌握,又难以迅速地作出判断.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
§2 方阵的特征值与特征向量.
第四节 微分 函 数 的 微 分 微分的定义 微分的几何意义 基本初等函数的微分公式 基本初等函数 的微分公式与 微分的运算法则
难点:连续变量函数分布与二维连续变量分布
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
三角 三角 三角 函数 余弦函数的图象和性质.
§4.1数学期望.
Presentation transcript:

第三节 协方差及相关系数 协方差 相关系数 课堂练习 小结 布置作业

前面我们介绍了随机变量的数学期望和方差,对于二维随机变量(X,Y),我们除了讨论X与Y的数学期望和方差以外,还要讨论描述X和Y之间关系的数字特征,这就是本讲要讨论的 协方差和相关系数

Cov(X,Y)=E{[ X-E(X)][Y-E(Y) ]} ⑵ Cov(aX,bY) = ab Cov(X,Y) a,b 是常数 一、协方差 量E{[ X-E(X)][Y-E(Y) ]}称为随机变量X和Y的协方差,记为Cov(X,Y) ,即 1.定义 Cov(X,Y)=E{[ X-E(X)][Y-E(Y) ]} 2.简单性质 ⑴ Cov(X,Y)= Cov(Y,X) ⑵ Cov(aX,bY) = ab Cov(X,Y) a,b 是常数 ⑶ Cov(X1+X2,Y)= Cov(X1,Y) + Cov(X2,Y)

Cov(X,Y)=E{[ X-E(X)][Y-E(Y) ]} =E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y) 3. 计算协方差的一个简单公式 由协方差的定义及期望的性质,可得 Cov(X,Y)=E{[ X-E(X)][Y-E(Y) ]} =E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y) =E(XY)-E(X)E(Y) 即 Cov(X,Y)=E(XY) -E(X)E(Y) 可见,若X 与 Y 独立, Cov(X,Y)= 0 .

D(X+Y)= D(X)+D(Y)+ 2Cov(X,Y) 特别地 4. 随机变量和的方差与协方差的关系 D(X+Y)= D(X)+D(Y)+ 2Cov(X,Y)

协方差的大小在一定程度上反映了X和Y相互间的关系,但它还受X与Y本身度量单位的影响. 例如: Cov(kX, kY)=k2Cov(X,Y) 为了克服这一缺点,对协方差进行标准化,这就引入了相关系数 .

定义: 设D(X)>0, D(Y)>0, 二、相关系数 定义: 设D(X)>0, D(Y)>0, 称 为随机变量 X 和 Y 的相关系数 . 在不致引起混淆时,记 为 .

0≤D(Y-bX)= b2D(X)+D(Y)-2b Cov(X,Y ) 相关系数的性质: 证: 由方差的性质和协方差的定义知, 对任意实数 b, 有 由于方差D(Y)是正的,故必有 1- ≥ 0,所以 | |≤1。 0≤D(Y-bX)= b2D(X)+D(Y)-2b Cov(X,Y ) 令 ,则上式为 D(Y- bX)=

2. X和Y独立时, =0,但其逆不真. 由于当X和Y独立时,Cov(X,Y)= 0. = 0 故 但由 并不一定能推出X和Y 独立. 请看下例.

例1 设X服从(-1/2, 1/2)内的均匀分布 , 而Y=cos X, , Cov(X,Y)=0, 不难求得 事实上,X的密度函数

因而 =0, 即X和Y不相关 . 但Y与X有严格的函数关系, 即X和Y不独立 . 存在常数 a,b(b≠0), 使 P{Y= a + b X}=1, 即 X 和 Y 以概率 1 线性相关.

相关系数刻划了X和Y间“线性相关”的程度. 考虑以X的线性函数a+bX来近似表示Y, 以均方误差 e =E{[Y-(a+bX)]2} 来衡量以 a +b X 近似表示Y 的好坏程度 : e 值越小表示 a +b X 与 Y 的近似程度越好. 用微积分中求极值的方法,求出使e 达到最小时的 a,b

e =E{[Y-(a+bX)]2 } L(X)=a0+b0X =E(Y2)+b2E(X2)+a2- 2bE(XY)+2abE(X) - 2aE(Y) 这样求出的 最佳逼近为 L(X)=a0+b0X 解得

| | 的值越接近于1, Y 与 X 的线性相关程度越高; | | 的值越接近于0, Y与X的线性相关程度越弱. 这样求出的最佳逼近为L(X)=a0+b0X 这一逼近的剩余是 E[(Y-L(X))2]= D(Y)(1- ) Y与X有严格线性关系; 若 可见, 若 =0, Y 与 X 无线性关系; 若0<| |<1, | | 的值越接近于1, Y 与 X 的线性相关程度越高; | | 的值越接近于0, Y与X的线性相关程度越弱.

但由X与Y不相关,不一定能推出X与Y独立. 前面,我们已经看到: 若 X 与 Y 独立,则X与Y不相关, 但由X与Y不相关,不一定能推出X与Y独立. 但对下述情形,独立与不相关等价 若(X,Y)服从二维正态分布,则 X与Y独立 X与Y不相关

三、课堂练习 1、 2、

1、解 2、解

四、小结 X 与 Y 独立 X 与 Y 不相关 这一节我们介绍了协方差、相关系数、 相关系数是刻划两个变量间线性相关程度的一个重要的数字特征. 注意独立与不相关并不是等价的. 当(X,Y) 服从二维正态分布时,有 X 与 Y 独立 X 与 Y 不相关

五、 布置作业 《概率论与数理统计》作业(四) 三、解答题 第6小题