17.1.1变量与函数(1).

Slides:



Advertisements
Similar presentations
1 、谁能说说什么是因数? 在整数范围内( 0 除外),如果甲数 能被乙数整除,我们就说甲数是乙数的 倍数,乙数是甲数的因数。 如: 12÷4=3 4 就是 12 的因数 2 、回顾一下,我们认识的自然数可以分 成几类? 3 、其实自然数还有一种新的分类方法, 你知道吗?这就是我们今天这节课的学.
Advertisements

2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
第二章 二次函数 第二节 结识抛物线
10.2 立方根.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
折线统计图 张家产中心完小.
20.2函数.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
18.1.1变量与函数(1) 初中数学资源网.
函数及其图象 大千世界处在不停的运动变化之中,如何来研究这些运动变化并寻找规律呢? 数学上常用变量与函数来刻画各种运动变化.
2-7、函数的微分 教学要求 教学要点.
余角、补角.
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
直线和圆的位置关系.
四年级数学 用字母表示数量关系和计算公式 制作:奔马 QQ
课前探究: 给定一个角 , 角 的终边与角 的终边有什么关系?它们的三角函数之间有什么关系?
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
y=3.60x 是 y= 120+30x 1、某种汽油3.60元/L。加油xL,应付 y元,那么y与x之间的函数关系式 是 。
同学们好! 肖溪镇竹山小学校 张齐敏.
拓展 问题 探究 练习 北师大版 五年级上册 第五单元 分数的意义 绿色圃中小学教育网
北师大版 六年级上册 第一单元 绿色圃中小学教育网
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
第七单元 小数的初步认识 简单的小数加、减法 安徽省黄山市黟县碧阳小学 叶群芳.
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
绿色圃中小学教育网 比例 比例的意义 绿色圃中小学教育网
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
1.1特殊的平行四边形 1.1菱形.
28.1 锐角三角函数(2) ——余弦、正切.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第一章 函数与极限.
数列.
第四章 四边形性质探索 第五节 梯形(第二课时)
第四章 一次函数 4. 一次函数的应用(第1课时).
§2-1现实生活中的问题与函数的概念 例2.钟表问题
19.1 函 数 19.1.1 变量与函数 第2课时 函 数.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
人教版小学数学三年级上册 认识几分之几 gjq.
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
一元二次不等式解法(1).
一辆汽车在公路上行驶,行驶的时间和路程如下表。
第二十六章 反比例函数 反比例函数的意义 北京市清华大学附属中学 张 钦.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
1.4.3正切函数的图象及性质.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
2、5、3的倍数的特征.
平行四边形的面积.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
锐角三角函数(1) ——正 弦.
****九年级数学组汇报教学 课题:§ 锐角三角函数 授课教师: 授课班级:九○三班.
反比例函数(复习课) y o x 常州市新北区实验中学 高兴林.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
位似.
H a S = a h.
第三章 图形的平移与旋转.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
Presentation transcript:

17.1.1变量与函数(1)

问题1 如图是某地一天内的气温变化图. 看图回答: (2)这一天中,最高气温是多少?最低气温是多少? (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温. (2)这一天中,最高气温是多少?最低气温是多少?

(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.

问题2 银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率: 存期x 三月 六月 一年 二年 三年 五年 年利率y(%) 1.71 2.07 2.25 2.70 3.24 3.60 观察上表,说说随着存期x的增长,相应的利率y是如何变化的. 随着存期x的增长,相应的年利率y也随着增长.

问题3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值: 波长l(m) 300 500 600 1000 1500 频率f(khz) 200 观察上表回答: (1)波长l和频率f数值之间有什么关系? (2)波长l越大,频率f 就________.

问题4 圆的面积随着半径的增大而增大.如果用r 表示圆的半径,S 表示圆的面积则S 与r 之间满足下列关系:S=______. 利用关系式,试求出半径为1 cm、1.5 cm、2 cm、2.6 cm、3.2 cm时圆的面积,并将结果填入下表: 问题4 πr2 由此可以看出,圆的半径越大,它的面积就______________

概括 在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量. 例如问题1中,刻画气温变化规律的量是时间t 和气温T,气温T 随着时间t 的变化而变化,它们都会取不同的数值. 像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable). 在问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量

上面各个问题中,都出现了两个变量,它们互相依赖,密切相关. 一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数.

表示函数关系的方法通常有三种: (1) 解析法,如问题3中的f = ,问题4中的S=πr2,这些表达式称为函数的关系式. (2) 列表法 波长l(m) 300 500 600 1000 1500 频率f(khz) 200 存期x 三月 六月 一年 二年 三年 五年 年利率y(%) 1.71 2.07 2.25 2.70 3.24 3.60 (3) 图象法

例1 下表是某市2000年统计的该市男学生各年龄组的平均身高. (1)从表中你能看出该市14岁的男学生的平均身高是多少吗? (2)该市男学生的平均身高从哪一岁开始迅速增加? (3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?

例2 写出下列各问题中的关系式,并指出其中的常量与变量: (1)圆的周长C 与半径r 的关系式; (2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式; (3)n 边形的内角和 S 与边数 n 的关系式.

课堂小结 1.函数概念包含: (1)两个变量; (2)两个变量之间的对应关系. 2.在某个变化过程中,可以取不同数值的量,叫做变量;数值始终保持不变的量,叫做常量.例如x和y,对于x 的每一个值,y 都有惟一的值与之对应,我们就说x 是自变量,y 是因变量. 3.函数关系三种表示方法: (1)解析法; (2)列表法; (3)图象法.

作业:P28. 习题18.1 1