数形结合.

Slides:



Advertisements
Similar presentations
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
Advertisements

复习: :对任意的x∈A,都有x∈B。 集合A与集合B间的关系 A(B) A B :存在x0∈A,但x0∈B。 A B A B.
精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
圆锥曲线复习.
1.设圆的圆心是C(a,b),半径为r,则圆的标准方程是(x-a)2+(y-b)2=r2
函数与方程、不等式专题.
第二章 二次函数 第二节 结识抛物线
第二章 函数、导数及其应用 第十四节 导数在研究函数中的应用(二).
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
一次函数的图象复习课 南华实验学校 初二(10)班 教师:朱中萍.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
初中数学 九年级(下册) 5.2 二次函数的图像和性质(4).
直线和圆的位置关系.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
义务教育教科书(北师)九年级数学下册 第二章 二次函数 二次函数与一元二次方程的关系.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
计算机数学基础 主讲老师: 邓辉文.
余弦函数的图象与性质 各位老师好! X.
三角函数的图象和性质 正弦函数,余弦函数的图象和性质 正弦,余弦函数的图形 函数y=Asin( wx+y)的图象 正切函数的图象和性质
2.1.2 指数函数及其性质.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
圆锥曲线的统一定义.
四川省天全中学说课竞赛 多媒体演示课件 ★ ☆ 函数的单调性 天全中学数学组 熊 亮.
小结·思考.
第四章 一次函数 4. 一次函数的应用(第1课时).
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
直线和圆的位置关系.
直线与圆的位置关系.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
抛物线的几何性质.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
直线和圆的位置关系 ·.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
一元二次不等式解法(1).
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
1.4.3正切函数的图象及性质.
高中数学选修 导数的计算.
第5课时 三角函数的值域和最值 要点·疑点·考点 课 前 热 身   能力·思维·方法   延伸·拓展 误 解 分 析.
1.4.3正切函数的图象及性质.
3.3.2《导数在研究函数 中的应用-极值》.
§3.7函数的单调性 y x.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
欢迎各位领导同仁 莅临指导!.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
幂 函 数.
人教A版 必修一 3.1·函数与方程 方程的根与函数的零点.
双曲线及其标准方程(1).
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
23.6 图形与坐标 图形的变换与坐标
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
§3 函数的单调性.
第七节 函数的图象.
反比例函数(复习课) y o x 常州市新北区实验中学 高兴林.
反比例函数(二) y o x.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
* 07/16/ 天津市第七十四中学 李家利 *.
第4讲 函数的单调性与最值 考纲要求 考纲研读 1.会求一些简单函数的值域. 2.理解函数的单调性、最大值、最小值及其几何意义.
函数与方程 更多模板请关注:
Presentation transcript:

数形结合

数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。数形结合就是把抽象的数学语言与直观的图形结合起来思索,使抽象思维与形象思维结合,通过“以形助数”或“以数解形”,可使得复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围. 【例1】已知:有向线段PQ的起点P 与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围. 斜率函数模型

【例2】求y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最大(小)值. θ,α∈R 距离函数模型

【例3】若直线y=x+k与曲线x= 恰有一个公共点,求k的取值范围. 截距函数模型:y=kx+b

设x>0,y>0,z>0且 求证:P>Q 余弦定理模型:

【例4】求抛物线y2=4x上到焦 点F(1,0)的距离与到点A(3,2)的距离 之和为最小的点P的坐标,并求这个最小值. 利用定义化曲为直

【例5】已知方程 有4个根,则实数m的取值范围 . 函数与方程关系

【例6】已知定义在R上的函数y=f(x)满足 下列三个条件:①对任意的x∈R都有f(x+4)=f(x);②对任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的图象关于y轴对称.则f(4.5),f(6.5),f(7)的大小关系是____

f’(x)g(x)+f(x) g’(x)>0 奇函数和偶函数,在区间[a,b](a<b<0)上,f(X)g(x) 为增函数,且f(x)·g(x)有最小值-5.则函数y=f(x)·g(x) 在区间[-b,-a]上( )   A. 是增函数且有最小值-5       B. 是减函数且有最小值-5       C. 是增函数且有最大值5       D. 是减函数且有最大值5 f’(x)g(x)+f(x) g’(x)>0

【例8】 若x∈(1,2)时,不等式 (x-1)2<logax恒成立,则a的取值范围是( )   A. (0,1)  B. (1,2)      C. (1,2] D. [1,2]

例9.已知函数f(x)=|sinx|的图像与直线 y=kx(k>0) 有且仅有三个交点,交点的横坐标的最大值为 ,求证:

设a为常数,试讨论方程lg(x-1)+lg(3-x)=lg(a-x)的实根的个数。

设a为常数,试讨论方程lg(x-1)+lg(3-x)= lg(a-x)的实根的个数。

谢谢大家!!