第1章 插 值 概念 实际中,f(x)多样,复杂,通常只能观测到一些离散数据;

Slides:



Advertisements
Similar presentations
数值分析 第五节 数值微分 在实际问题中,往往会遇到某函数 f(x) 是用表格 表示的, 用通常的导数定义无法求导, 因此要寻求其他 方法近似求导。常用的数值微分方法有 : 一. 运用差商求数值微分 二.运用插值函数求数值微分 三. 运用样条插值函数求数值微分 四. 运用数值积分求数值微分.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
1/14 练习题 Ex1. 计算球体 V 允许其相对误差限为 1%, 问测量球 半径 R 的相对误差限最大为多少 ? 试分析高度误差对面积计算的影响。 Ex2. 将地球模型取为半径为 R (km) 的球体,赤道上 方高度为 d (km) 的地球同步卫星发射的信号对地球 的覆盖面积计算公式为 Ex3 在计算机上对调和级数逐项求和.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三章 微分中值定理与 导数的应用. 3.1 微分中值定理 3.3 洛必达法则 3.2 泰勒公式 3.4 函数的单调性 3.9 曲率 3.8 函数图形的描绘 3.5 函数的极值 3.7 曲线的凹凸性及拐点 3.6 函数的最值及其应用.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
1.3 二项式定理. [ 题后感悟 ] 方法二较为简单,在展开二项式之前根据二项 式的结构特征进行适当变形,可使展开多项式的过程简化.记 准、记熟二项式 (a + b) n 的展开式,是解答好与二项式定理有关 问题的前提,对较复杂的二项式,有时可先化简再展开,会更 简便.
1 第三章 函数逼近 — 正交多项式. 2 内容提要 正交多项式 正交函数族与正交多项式 Legendre 正交多项式 Chebyshev 正交多项式 Chebyshev 插值 第二类 Chebyshev 正交多项式 Laguerre 正交多项式 Hermite 正交多项式.
高等数学 A (一) 总复习(2).
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
第二讲 函数 插值 —— 多项式插值 —— Lagrange 插值.
第2章 插 值 法 第1节 引言 第2节 拉格朗日插值 第3节 均差与牛顿插值多项式 第4节 埃尔米特插值 第5节 分段低次插值
数值计算方法 第 4 章 插 值 法 4.4 Newton 插值法.
§2 无穷积分的性质与收敛判别.
第二章 数值微分和数值积分.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
9.1 数值积分基本方法 9.2 梯形积分 9.3 Simpson积分 9.4 Newton-Cotes积分 9.5 Romberg积分
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第四章 数值积分与数值微分 — 基本概念 — Newton-Cotes 公式.
计算方法 第2章 数值微分与数值积分 2.1 数值微分.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
微积分基本公式 在上一节我们已经看到,直接用定义计算定积分是十分繁难的,因此我们期望寻求一种计算定积分的简便而又一般的方法。我们将会发现定积分与不定积分之间有着十分密切的联系,从而可以利用不定积分来计算定积分。
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第 2 章 插 值 法.
第4章 函数的插值 刘东毅 天津大学理学院数学系 4: 函数的插值.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第2章 Z变换 Z变换的定义与收敛域 Z反变换 系统的稳定性和H(z) 系统函数.
第四章 数值积分与数值微分 — 复合求积公式 — Romberg 算法.
第四章 插值 /* Interpolation */
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第二章 插值.
Matlab 选讲 二 上海交通大学数学系 刘小军
实验3 插值与数值积分.
第三单元 第4课 Matlab数据插值 1.一维插值 2.二维插值 3.对非网格数据进行插值.
第二章 函数 插值 — 分段低次插值.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第二章 插值法 2.1 引言 2.2 拉格朗日插值 2.3 均差与牛顿插值公式 2.4 差分与等距节点插值 2.5 埃尔米特插值
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第二章 函 数 插 值 — 三次样条插值.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§2 方阵的特征值与特征向量.
人教A版 必修一 3.1·函数与方程 方程的根与函数的零点.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

第1章 插 值 概念 实际中,f(x)多样,复杂,通常只能观测到一些离散数据; 第1章 插 值 概念 实际中,f(x)多样,复杂,通常只能观测到一些离散数据; 或者f(x)过于复杂而难以运算。这时我们要用近似函数g(x)来逼近f(x)。 自然地,希望g(x)通过所有的离散点 x0 x1 x2 x3 x4 x g(x)  f(x)

问题 是否存在唯一 如何构造 误差估计 定义: 为定义在区间 上的函数, 为区间上n+1个互不 相同的点, 为给定的某一函数类。求 上的函数 满足 问题 是否存在唯一 如何构造 误差估计

有解 系数行列式不为0 设 则 特点: 与基函数无关 与原函数f(x)无关 基函数个数与点个数相同

存在唯一定理 定理1.1 : 为n+1个节点, n+1维空间,则插值函数存在唯一,当且仅当

对应于 则 Vandermonde行列式

多项式插值的Lagrange型 如何找? 在基函数上下功夫,取基函数为 要求 则

求 ,易知: 线性插值

二次插值

分别利用 sin x 的1次、2次 Lagrange 插值计算 sin 50 并估计误差。 例: 例:已知 分别利用 sin x 的1次、2次 Lagrange 插值计算 sin 50 并估计误差。

内插通常优于外推。选择要计算的 x 所在的区间的端点,插值效果较好。 §1 Lagrange Polynomial 解: n = 1 分别利用x0, x1 以及 x1, x2 计算 利用 内插通常优于外推。选择要计算的 x 所在的区间的端点,插值效果较好。 ) 18 5 ( 50 sin 1  p L 0.77614 这里 而 sin 50 = 0.7660444… 外推 /* extrapolation */ 的实际误差  0.01001 利用 sin 50  0.76008, 内插 /* interpolation */ 的实际误差  0.00596

sin 50 = 0.7660444… 2次插值的实际误差  0.00061 高次插值通常优于低次插值 n = 2 0.76543 ) 18 5 ( 50 sin 2  p L 0.76543 sin 50 = 0.7660444… 2次插值的实际误差  0.00061 高次插值通常优于低次插值

误差 解: 求 设 易知

有n+2个零点 由a的任意性

事后误差估计 给定 任取n+1个构造 如: 另取 则

近似 则

Lagrange 插值的缺点 无承袭性。增加一个节点,所有的基函数都要重新计算

Newton型多项式插值 承袭性: 且 为实数 同样

而且有:

这样:

定义:差商 称为k阶差商 称为1阶差商

由归纳:

此处用到差商的一个性质: (用归纳法易证) 对称性: 定义关键:找不同的元素相减作分母

Newton插值构造 1、先构造差商表

2、利用差商表的最外一行,构造插值多项式 例子 2点Newton型插值

一些性质 性质2

误差 性质3

差商性质总结

1.4 Hermite插值 有时候,构造插值函数除了函数值的条件以外,还需要一定的

§3 Hermite Interpolation 例:设 x0  x1  x2, 已知 f(x0)、 f(x1)、 f(x2) 和 f ’(x1), 求多项式 P(x) 满足 P(xi) = f (xi),i = 0, 1, 2,且 P’(x1) = f ’(x1), 并估计误差。 解:首先,P 的阶数 = 3 模仿 Lagrange 多项式的思想,设  + = 2 1 3 ) ( i x h x1 f ’ f P  其中 hi(xj) = ij , hi’(x1) = 0, (xi) = 0, ’(x1) = 1  h1 有根 x1, x2,且 h0’(x1) = 0  x1 是重根。 h0(x) ) ( 2 1 x C h - = 又: h0(x0) = 1  C0 h2(x) 与h0(x) 完全类似。 h1(x) 有根 x0, x2  与 Lagrange 分析完全类似 ) )( ( 2 1 x B Ax h - + = 由余下条件 h1(x1) = 1 和 h1’(x1) = 0 可解。 (x)  h1  h1 ) )( ( 2 1 x C - = 有根 x0, x1, x2   h1 又: ’(x1) = 1  C1 可解。

仿照Lagrange插值的做法,首先确定多项式插值空间的维数, 注意到,我们的条件共有2(n+1)个条件,所以,最高次数为2n+1

整个构造步骤如下: 1、确定多项式的最高项次数,就是函数空间的维数 2、假设一组基函数,列出插值多项式 3、列出基函数满足的公式(画表),求基函数 称为 构造基函数方法

误差分析 类似Lagrange插值的分析方法

二重密切Hermite插值误差

 是否次数越高越好呢? 例:在[5, 5]上考察 的Ln(x)。取 Ln(x)  f (x) n 越大, 端点附近抖动 越大,称为 - 5 4 3 2 1 0.5 1.5 2.5 Ln(x)  f (x)  n 越大, 端点附近抖动 越大,称为 Runge 现象

分段低阶插值 Runge现象 等距高次插值,数值稳定性差,本身是病态的。 1901年,Runge 例: 等距节点构造10次Lagrange插值多项式 -0.90 0.04706 1.57872 -0.70 0.07547 -0.22620 -0.50 0.13793 0.25376 -0.30 0.30769 0.23535

分段低次插值 分段线性插值 每个小区间上,作线性插值 特性 (1) (2) 在每个小区间上为一个不高于1次的多项式

误差 可以看出

收敛,可惜只一阶精度,不够光滑。 类似,可以作二重密切Hermite插值 关键: 分段、低阶插值

三次样条插值 分段低阶插值,收敛性好,但光滑性不够理想。在工业设计中, 对曲线光滑性要求高,如:流线型 设想这样一曲线:插值,次数不高于3次,整个曲线2阶连续导 数,称为三次样条函数插值。

每个小区间不高于3次, 有4n个未知数,我们的已知条件如下: 共3n-3+n+1=4n-2个条件

需要附加2个条件,通常在边界处给出 m关系式 设 所以,是3次二重Hermite插值,记

两个边界条件

有 加上边值条件 (1) 固支边界条件 (2) (3) 周期边界条件

M关系式 设 记 三弯距法: 3次多项式导2次后,为线性函数

积分2次 由 有

计算过程如下