三角函数 内蒙古五原一中 党国强 复 习 课.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

大綱 1. 三角函數的導函數. 2. 反三角函數的導函數. 3. 對數函數的導函數. 4. 指數函數的導函數.
1.4.1正弦、余弦函数的图象 莆田一中 林清利.
知识结构 三角函数.
第三章 三角函数与解三角形 第三节 两角和与差及二倍角 三角函数公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三章 导数与微分 习 题 课 主要内容 典型例题.
余角、补角.
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
课前探究: 给定一个角 , 角 的终边与角 的终边有什么关系?它们的三角函数之间有什么关系?
高三专题复习研究 《三角函数》 成都市龙泉四中陈显亮.
必修四 第一章:三角函数 任意角.
第1讲 任意角、弧度制及任意角的三角函数.
2.4  任意角的三角函数 一、素质教育目标 (一)知识教学点 1.任意角三角函数定义. 2.三角函数定义域.
正弦、余弦函数的图象 制作:范先明 X.
计算机数学基础 主讲老师: 邓辉文.
余弦函数的图象与性质 各位老师好! X.
2.9  正弦函数、余弦函数的图象和性质(二) 一、素质教育目标 (一)知识教学点
正弦函数、余弦函数的图象 授课教师: 李毅重.
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
复习: 什么叫做锐角三角函数(即直角三角形中的三角函数)? 以锐角为自变量,以比值为函数值的函数叫做锐角三角函数。
三角函数的图象和性质 正弦函数,余弦函数的图象和性质 正弦,余弦函数的图形 函数y=Asin( wx+y)的图象 正切函数的图象和性质
2.1.2 指数函数及其性质.
九年级数学(下册)第二十八章 §28.1 锐角三角函数(3) 平南县上渡初中何老师.
解直角三角形复习课 (一) A B b a c ┏ C.
3.1 两角和与差的正弦、余弦 和正切公式 两角差的余弦公式.
28.1 锐角三角函数(2) ——余弦、正切.
第一章 函数与极限.
计算.
         
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
微积分 (Calculus) 2019/4/27.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
任意角的三角函数(1).
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
5.1 弧度制 例 5.3 解:.
解三角形 赵伟.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第二章 三角函數 2-5 三角函數的圖形.
高中数学必修四 第一章 1.4.2正弦函数余弦函数的性质(2).
课题 三角函数复习课.
第4课时 三角函数的单调性、奇偶性、周期性 要点·疑点·考点 课 前 热 身   能力·思维·方法   延伸·拓展 误 解 分 析.
正弦函数图象是怎样画的? 正切函数是不是周期函数? 正切函数的定义域是什么? y=tanx,xR, 的图象 叫做正切曲线;
1.4.3正切函数的图象及性质.
第5课时 三角函数的值域和最值 要点·疑点·考点 课 前 热 身   能力·思维·方法   延伸·拓展 误 解 分 析.
1.4.3正切函数的图象及性质.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
幂 函 数.
4.7 二倍角的正弦、 余弦、正切.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
正弦函数的性质与图像.
1-4 和角公式與差角公式 差角公式與和角公式 1 倍角公式 2 半角公式 和角公式與差角公式 page.1/23.
人教版必修4《三角函数》 教材分析与教学建议
1.4.2 正弦函数、 余弦函数的性质.
锐角三角函数(1) ——正 弦.
****九年级数学组汇报教学 课题:§ 锐角三角函数 授课教师: 授课班级:九○三班.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
反比例函数(复习课) y o x 常州市新北区实验中学 高兴林.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
1.4.1正弦函数、余弦函数的图象.
三角函数 北京石油化工学院 蓝波.
3.1.2 两角和与差的正弦、 余弦、正切公式.
正弦函数、余弦函数的图象与性质 授课者:章咏梅.
1.4.1正弦函数、余弦函数的图象.
* 07/16/ 天津市第七十四中学 李家利 *.
三角函数 江苏省宿豫中学 杨亚 复 习 课.
4.2 同角三角函数的基本关系 及诱导公式.
Presentation transcript:

三角函数 内蒙古五原一中 党国强 复 习 课

一、任意角的三角函数 y 的终边 1、角的概念的推广 正角 零角 o x 负角 的终边

2、角度与弧度的互化 特殊角的角度数与弧度数的对应表 度 弧度 0

三角函数值的符号:“一全正,二正弦,三两切,四余弦” y P(x,y) 3、任意角的三角函数定义 ● 定义: r o x 三角函数值的符号:“一全正,二正弦,三两切,四余弦” 4、同角三角函数的基本关系式 倒数关系: 商关系: 平方关系:

5、诱导公式: (即把 看作是锐角) 例:

二、两角和与差的三角函数 y ● 1、预备知识:两点间距离公式 o x ● 2、两角和与差的三角函数 注:公式的逆用 及变形的应用 公式变形

3、倍角公式 注:正弦与余弦的倍角公式的逆用实质上就是降幂的过程。特别

三、三角函数的图象和性质 1、正弦、余弦函数的图象与性质 y=sinx y=cosx 图象 y y o x x o 定义域 R R -1 -1 定义域 R R [-1,1] [-1,1] 值 域 周期性 T=2 T=2 性 质 奇偶性 奇函数 偶函数 单调性

2、函数 的图象(A>0, >0 ) 第一种变换: 第二种变换: 图象向左( ) 或 向右( ) 平移 个单位 图象向左( ) 或 向右( ) 平移 个单位 横坐标伸长( )或缩短( )到原来的 倍 纵坐标不变 纵坐标伸长(A>1 )或缩短( 0<A<1 )到原来的A倍 横坐标不变 第二种变换: 横坐标伸长( )或缩短( )到原来的 倍 纵坐标不变 图象向左( ) 或 向右( ) 平移 个单位 纵坐标伸长(A>1 )或缩短( 0<A<1 )到原来的A倍 横坐标不变

3、正切函数的图象与性质 y=tanx y 图 象 o x 定义域 值域 R 周期性 奇偶性 奇函数 单调性

4、已知三角函数值求角 ⑴反三角函数 y=sinx , 的反函数 y=arcsinx , y=cosx, 的反函数y=arccosx, y=tanx, 的反函数y=arctanx, ⑵已知角x ( )的三角函数值求x的步骤 ①先确定x是第几象限角 ②若x 的三角函数值为正的,求出对应的锐角 ;若x的三角函数 值为负的,求出与其绝对值对应的锐角 ③根据x是第几象限角,求出x 若x为第二象限角,即得x= ;若x为第三象限角,即得 x= ;若x为第四象限角,即得x= ④若 ,则在上面的基础上加上相应函数的周期的整数倍。

四、主要题型 例1:已知 是第三象限角,且 ,求 。 解: 应用:三角函数值的符号;同角三角函数的关系;

例2:已知 ,计算⑴ ⑵ 解:⑴ ⑵ 应用:关于 的齐次式

例3:已知 , 解: 应用:找出已知角与未知角之间的关系

例4:已知 解: 应用:化简求值

例5:已知函数 求:⑴函数的最小正周期;⑵函数的单增区间;⑶函数的最大值 及相应的x的值;⑷函数的图象可以由函数 的图象经过怎样的变换得到。 解: ⑴ ⑵ ⑶ ⑷ 图象向左平移 个单位 图象向上平移2个单位 应用:化同一个角同一个函数