第四节 第十章 重积分的应用 一、立体体积 二、曲面的面积 三、物体的质心 四、物体的转动惯量 五、物体的引力.

Slides:



Advertisements
Similar presentations
第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
第五章 多元函数微分学.
§3.4 空间直线的方程.
第七章 多元微分学 空间曲面与曲线 多元函数的基本概念 偏微商与全微分 多元复合函数及隐函数求导法则 多元函数的极值和最优化问题.
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
第六节 曲面与空间曲线 一、曲面及其方程 二、 柱 面 三、 旋转曲面 四、 二次曲面 五、 空间曲线的方程.
第六节 曲面及其方程 一 曲面方程的概念 二 旋转曲面 三 柱面 四 二次曲面.
第一节 空间解析几何的基本知识 1、空间直角坐标系 2、几种特殊的曲面 3、空间曲线.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
复习 设 1. 向量运算 加减: 数乘: 点积: L.P204~P206 叉积:.
3.4 空间直线的方程.
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
碰撞 两物体互相接触时间极短而互作用力较大
第六章 定积分的应用 利用元素法解决: 定积分在几何上的应用 (L.P184) 定积分在物理上的应用.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
§7.6 二重积分 二重积分的概念 二重积分的性质 二重积分的计算 小结 思考与练习.
第六章 定积分的应用 第一节:定积分的元素法 第二节:定积分在几何上的应用 第三节:定积分在物理上的应用.
第十章 第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的 等价条件 机动 目录 上页 下页 返回 结束.
第十章 定积分的应用(一) 一、平面图形的面积 面积公式(直角坐标,极坐标) 二、由平行截面面积求体积 由平行截面面积求体积
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
设立体介于x=a,x=b之间,A(x)表示过
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
定积分习题课.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
多元函数微分学学习辅导 一、内容提要 二、典型例题 首页 上页 返回 下页 结束.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
第三节 第十章 三重积分 一、三重积分的概念 二、三重积分的计算.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
第四章 一次函数 4. 一次函数的应用(第1课时).
3.3 垂径定理 第2课时 垂径定理的逆定理.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
定积分应用 欧阳顺湘 北京师范大学珠海分校.
抛物线的几何性质.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
直线和圆的位置关系 ·.
§6 三重积分 一、三重积分的定义 二、直角坐标系下的计算 三、三重积分换元法 四、柱面坐标系下的计算 五、球面坐标系下的计算.
立体图形的表面积和体积 小学数学总复习.
一、平面简谐波的波动方程.
§5 三 重 积 分 一、 三重积分的概念 二、 化三重积分为累次积分 三、 三重积分换元法
二重积分的换元 主讲人:汪凤贞.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
生活中的几何体.
第一模块 向量代数与空间解析几何 第六节 二次曲面与空间曲线 一、曲面方程的概念 二、常见的二次曲面及其方程 三、空间曲线的方程
Presentation transcript:

第四节 第十章 重积分的应用 一、立体体积 二、曲面的面积 三、物体的质心 四、物体的转动惯量 五、物体的引力

1. 能用重积分解决的实际问题的特点: 分布在有界闭域上的整体量 所求量是 对区域具有可加性 2. 用重积分解决问题的方法: —— 用微元分析法 (元素法)建立积分式 3. 解题要点: 画出积分域、选择坐标系、确定积分序、 定出积分限、计算要简便

一、立体体积 曲顶柱体的顶为连续曲面 则其体积为 占有空间有界域  的立体的体积为

例1. 求曲面 任一点的切平面与曲面 所围立体的体积 V . 分析: 第一步: 求切平面 方程; 第二步: 求 与S2的交线 在xOy面上的投影, 写出所围区域 D ; 第三步: 求体积V . (示意图)

例1. 求曲面 任一点的切平面与曲面 所围立体的体积 V . 解: 曲面 在点 的切平面方程为 它与曲面 的交线在 xOy 面上的投影为 (记所围域为D )

例2. 求半径为a 的球面与半顶角为 的 内接锥面所围成的立体的体积. 解: 在球坐标系下空间立体所占区域为 则立体体积为

二、曲面的面积 设光滑曲面 则面积 A 可看成曲面上各点 处小切平面的面积 d A 无限积累而成. 设它在 D 上的投影为 d , 则 (称为面积元素)

故有曲面面积公式 即 若光滑曲面方程为 则有

若光滑曲面方程为 则有 若光滑曲面方程为隐式 且 则

例3. 计算双曲抛物面 被柱面 所截 出的面积 A . 解: 曲面在 xOy 面上投影为 则

例4. 计算半径为 a 的球的表面积. 解: 方法1 利用球坐标方程. 设球面方程为 球面面积元素为 方法2 利用直角坐标方程. (略)

三、物体的质心 设空间有n个质点, 分别位于 其质量分别 为 由力学知, 该质点系的质心坐标 为 设物体占有空间域  , 有连续密度函数 则 采用 “大化小, 常代变, 近似和, 取极限” 可导出其质心 公式 , 即:

将  分成 n 小块, 在第 k 块上任取一点 将第 k 块看作质量集中于点 的质点, 此质点 系的质心坐标就近似该物体的质心坐标. 例如, 令各小区域的最大直径 即得

同理可得 则得形心坐标:

若物体为占有xOy 面上区域 D 的平面薄片, 其面密度 则它的质心坐标为 — 对 x 轴的 静矩 — 对 y 轴的 静矩 得D 的形心坐标: ( A 为D 的面积)

例5. 求位于两圆 和 之间均匀薄片 的质心. 解: 利用对称性可知 而

例6. 一个炼钢炉为旋转体形, 剖面壁线 的方程为 若炉 内储有高为 h 的均质钢液, 不计炉体的 自重, 求它的质心. 解: 利用对称性可知质心在 z 轴上, 故 其坐标为 采用柱坐标, 则炉壁方程为 因此

四、物体的转动惯量 因质点系的转动惯量等于各质点的转动惯量之和, 故 连续体的转动惯量可用积分计算. 设物体占有空间区域  , 有连续分布的密度函数 该物体位于(x , y , z) 处的微元 对 z 轴的转动惯量为 因此物体 对 z 轴 的转动惯量:

类似可得: 对 x 轴的转动惯量 对 y 轴的转动惯量 对原点的转动惯量

如果物体是平面薄片, 面密度为 则转动惯量的表达式是二重积分.

例7.求半径为 a 的均匀半圆薄片对其直径 的转动惯量. 解: 建立坐标系如图, 半圆薄片的质量

例8.求密度为 的均匀球体对于过球心的一条轴 l 的 转动惯量. 解: 取球心为原点, z 轴为 l 轴, 设球所占 域为 则 (用球坐标) 球体的质量

例8.求密度为 的均匀球体对于过球心的一条轴 l 的 转动惯量. 解: 取球心为原点, z 轴为 l 轴, 设球所占 域为 则 (用球坐标) 球体的质量

五、物体的引力 设物体占有空间区域 , 其密度函数 物体对位于点P0(x0, y0, z0)处的单位质量质点的引力为 引力元素在三坐标轴上分量为 其中 ,G 为引力常数

因此引力分量为 其中: 若求 xOy 面上的平面薄片D, 对点P0处的单位质量质点 的引力分量, 则上式改为D上的二重积分, 密度函数改为 即可. 例如,

例9. 设面密度为μ ,半径为R的圆形薄片 求它对位于点 。 处的单位质量质点的引力. 解: 由对称性知引力

例10. 求半径为R的均匀球 对位于 点 的单位质量质点的引力. 解: 利用对称性知引力分量

为球的质量

作业 P153 7,10 , 17 P173 1,3,6, 11, 13 , 14 习题课

备用题 设有一高度为 ( t 为时间) 的雪堆在融化过程中,其 侧面满足方程 设长度单位为厘米, 时间单位为小时, 已知体积减少的速率与侧面积成正比 (比例系数 0.9 ), 问高度为130 cm 的雪堆全部融化需要 多少小时? (2001考研)

提示: 记雪堆体积为 V, 侧面积为 S ,则 (用极坐标) 侧面方程:

由题意知 令 得 因此高度为130厘米的雪堆全部融化所需的时间为 100小时.