第2课时 等比数列的性质及应用 【课标要求】 1.理解等比数列的性质并能应用. 2.了解等比数列同指数函数间的关系. 3.会用等比数列的性质解题. 【核心扫描】 1.等比数列的性质及应用.(重点) 2.等比数列与等差数列的综合应用.(重点) 3.与函数、方程、不等式等结合命题.(难点)

Slides:



Advertisements
Similar presentations
2009 套读自考本科简介 —— 抓住机遇,用知识改变命运 目 录 二、提升学历、提升自身素质的途径选择 三、高教自考和套读自考本科介绍 四、我校自考套读本科情况介绍 一、就业状况 五、我校今年招生专业介绍.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
数学第二轮专题复习第二部分 专题五 数列解答题的解法.
2009年广播影视人事人才统计年报业务培训 广东省广电局人事处 2010年1月6日
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
§3.5.1等比数列的前n项和 教育技术1班 尤欢欢
不会宽容人的人, 是不配受到别人的宽容的。 贝尔奈.
复习回顾 a a×a a×a×a a a×a×a= a×a= 1.如图,边长为a厘米的正方形的面积 为 平方厘米。
温故知新: an-an-1=d(d为常数) 1、等差数列定义: 2、等差数列单调性: 用什么方法如推出的呢?图像怎样? d>0单调递增
第一章 数列.
引题: 分裂问题 变形虫 假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,……,一直进行下去,记录下每个单位时间的变形虫个数得到了一个数列,这是我们将要研究的另一类数列——等比数列。
第三章 函数逼近 — 最佳平方逼近.
中国建筑钢结构施工企业诚信评价建设管理办法
《高等数学》(理学) 常数项级数的概念 袁安锋
四种命题 2 垂直.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
邵阳文化.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
高三二轮复习 课题:数列求和基本方法拓展 青岛十五中 王海蛟.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
等比数列.
等比数列的通项公式 等比数列 徐水职教中心 王海水.
第2章 数列 2.3 等比数列 2.3.2 等比数列的前n项和.
阅读p48等比数列 等比数列 ——乌海市第十中学高二数学组.
等比数列.
元素替换法 ——行列式按行(列)展开(推论)
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
《等差数列》 去除PPT模板上的--课件下载: 的文字
等差数列(1).
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
数列.
课题:1.5 同底数幂的除法.
1.5 函数y=Asin(ωx+φ)的图象.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
2.2等差数列.
人教版高一数学上学期 第一章第四节 绝对值不等式的解法(2)
{ a1, q, Sn= a1q a1q + a1q 先回顾等比数列前n项求和公式的推导 n n·a1 an=a1• q 已知:
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
  能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.
1.2 子集、补集、全集习题课.
等差与等比综合(3).
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
第4课时 绝对值.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
3.2.2 复数代数形式的乘除运算.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
§2 方阵的特征值与特征向量.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
三角 三角 三角 函数 余弦函数的图象和性质.
数列求和 Taojizhi 2019/10/13.
一元一次方程的解法(-).
数列求和.
Presentation transcript:

第2课时 等比数列的性质及应用 【课标要求】 1.理解等比数列的性质并能应用. 2.了解等比数列同指数函数间的关系. 3.会用等比数列的性质解题. 【核心扫描】 1.等比数列的性质及应用.(重点) 2.等比数列与等差数列的综合应用.(重点) 3.与函数、方程、不等式等结合命题.(难点)

自学导引 1. 等比数列的项与序号的关系以及性质 设等比数列{an}的公比为q. (1)两项关系:an=_______(m,n∈N*). (2)多项关系:若m+n=p+q(m,n,p,q∈N*),则aman=____. (3)若m,n,p(m,n,p∈N*)成等差数列时,am,an,ap成等比数列. 等比数列的项的对称性 有穷等比数列中,与首末两项“等距离”的两项之积等于首末两 amqn-m apaq 2. an-1 an-k+1

3. 等比数列的“子数列”的性质 若数列{an}是公比为q的等比数列,则 (1){an}去掉前几项后余下的项仍组成公比为__的等比数列; (2)奇数项数列{a2n-1}是公比为__的等比数列; 偶数项数列{a2n}是公比为__的等比数列; (3)在数列{an}中每隔k(k∈N*)取出一项,按原来顺序组成新数列,则新数列仍为等比数列且公比为qk+1. q q2 q2

:如果等比数列{an}中,m+n=2k(m,n,k∈N :如果等比数列{an}中,m+n=2k(m,n,k∈N*),那么am·an=ak2是否成立?反之呢? 提示:如果等比数列的三项的序号成等差数列,那么对应的项成等比数列. 事实上,若m+n=2k(m,n,k∈N*), 则am·an=(a1·qm-1)·(a1·qn-1)=a12·qm+n-2=a12(qk-1)2=ak2. 在等比数列{an}中,若am·an=ap·aq=ak2,不一定有m+n=p+q=2k,如非零常数列.

名师点睛 1. 等比数列的单调性 (1)当q>1,a1>0或0<q<1,a1<0时,等比数列{an}是递增数列. (2)当q>1,a1<0或0<q<1,a1>0时,等比数列{an}是递减数列. (3)当q=1时,等比数列{an}是常数列. (4)当q<0时,等比数列{an}是摆动数列. 等比数列的运算性质 (1)若{an}是公比为q的等比数列,则 ①{c·an}(c是非零常数)是公比为q的等比数列; ②{|an|}是公比为|q|的等比数列; 2.

④{anm}(m是整数常数)是公比为qm的等比数列. 特别地,若数列{an}是正项等比数列时,数列{anm}(m是实数常数)是公比为qm的等比数列. (2)若{an},{bn}分别是公比为q1,q2的等比数列,则数列{an·bn}是公比为q1q2的等比数列. (3)数列{an}是各项均为正数的等比数列时,数列{lg an}是公差为lg q的等差数列.

题型一 等比数列性质的应用 【例1】 已知数列{an}为等比数列. (1)若an>0,且a2a4+2a3a5+a4a6=36,求a3+a5的值; (2)若a1+a2+a3=7,a1a2a3=8,求数列{an}的通项公式. [思路探索] 应用等比数列的性质:a2a4=a32,a4a6=a52,a1a3=a22,化简已知,可求解. 解 (1)法一 ∵an>0,∴a1>0,q>0. 又∵a2a4+2a3a5+a4a6=36, ∴a1q·a1q3+2a1q2·a1q4+a1q3·a1q5=36, 即a12q4+2a12q6+a12q8=36,

∴a12q4(1+2q2+q4)=36,即a12q4(1+q2)2=36, ∴a1q2(1+q2)=6, ∴a3+a5=a1q2+a1q4=a1q2(1+q2)=6. 法二 ∵a2a4+2a3a5+a4a6=36, ∴a32+2a3a5+a52=36, ∴(a3+a5)2=36,∴a3+a5=6. (2)∵a22=a1a3代入已知,得a23=8,∴a2=2.

在等比数列的有关运算中,常常涉及到次数较高的指数运算.若按常规解法,往往是建立a1,q的方程组,这样解起来很麻烦,通过本例可以看出:结合等比数列的性质进行整体变换,会起到化繁为简的效果.

【变式1】 在递增等比数列{an}中,a1a9=64,a3+a7=20,求a11的值. 解 在等比数列{an}中, ∵a1·a9=a3·a7, ∴由已知可得:a3·a7=64与a3+a7=20联立得: ∵{an}是递增等比数列,∴a7>a3. ∴取a3=4,a7=16,∴16=4q4,∴q4=4. ∴a11=a7·q4=16×4=64.

题型二 等差数列与等比数列的综合应用 【例2】 题型二 等差数列与等比数列的综合应用 【例2】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. [思路探索] 根据等差数列和等比数列的性质,设出未知数,结合题中条件求解即可.

所以,当a=4,d=4时,所求四个数为0,4,8,16; 当a=9,d=-6时,所求四个数为15,9,3,1 所以,当a=4,d=4时,所求四个数为0,4,8,16; 当a=9,d=-6时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1. 当a=8,q=2时,所求四个数为0,4,8,16;

【变式2】 三个数成等比数列,其积为512,如果第一个数与第三个数各减去2,则这三个数成等差数列,求这三个数.

题型三 等比数列的实际应用 【例3】 某市2010年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底 (1)该市历年所建中低价房的累计面积(以2010年为累计的第一年)将首次不少于4 750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 审题指导 本题主要考查构建数学模型解决实际问题,通过阅读之后,找出题目中的相关信息,构造等差数列和等比数列.

[规范解答] (1)设中低价房面积构成数列{an},由题意可知,{an}是等差数列,其中a1=250,d=50, (2分) 令25n2+225n≥4 750,即n2+9n-190≥0, 解得n≤-19或n≥10,而n是正整数. ∴n≥10. (4分) 故到2019年年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (6分)

(2)设新建住房面积构成数列{bn}, 由题意可知,{bn}是等比数列, 其中b1=400,q=1. 08,则bn=400×(1 (2)设新建住房面积构成数列{bn}, 由题意可知,{bn}是等比数列, 其中b1=400,q=1.08,则bn=400×(1.08)n-1, (8分) 由题意可知an>0.85bn, 即250+(n-1)×50>400×(1.08)n-1×0.85满足上述不等式的最小正整数n=6. (10分) 故到2015年年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. (12分)

【题后反思】 本题将实际问题抽象出一个数列问题,解决数列应用题的关键是读懂题意,建立数学模型,弄清问题的哪一部分是数列问题,是哪种数列.在求解过程中应注意首项的确立,时间的推算.不要在运算中出现问题.

【变式3】 始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此拖累,国际原油价格从2008年 7月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出7月到9月平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)? 解 设每月平均下降的百分比为x,则每月的价格构成了等比数列{an},记:a1=147(7月份价格), 则8月份价格:a2=a1(1-x)=147(1-x); 9月份价格:a3=a2(1-x)=147(1-x)2. ∴147(1-x)2=97,解得x≈18.8%. 设an=34,则34=147·(1-18.8%)n-1, 解得n=8. 即从2008年7月算起第8个月,也就是2009年2月国际原油价格将跌至34美元每桶.

误区警示 因没数清数列的项数致误 【示例】 A.(n-1)2 B.n2 C.(n+1)2 D.n(2n-1) [错解] 易得an=2n,且log2a1+log2a3+…+log2a2n-1 =log2(a1a3…a2n-1)=log221+3+…+(2n-1)

对等差数列1,3,…,2n-1的项数没数清. [正解] ∵a5·a2n-5=22n=an2,an>0, ∴an=2n,∴log2a1+log2a3+…+log2a2n-1 =log2(a1a3…a2n-1)=log221+3+…+(2n-1) =log22n2=n2.故选B. 答案 B

解决此类问题时,可根据通性通法,但有时用等比数列的性质,能加快解题速度,提高解题效率,达到事半功倍的效果.

单击此处进入 活页规范训练