一、利用导数作近似计算 1. 近似计算 是用计算方法得到一定精度的计算结果. y 于是 o x.

Slides:



Advertisements
Similar presentations
数值分析 第五节 数值微分 在实际问题中,往往会遇到某函数 f(x) 是用表格 表示的, 用通常的导数定义无法求导, 因此要寻求其他 方法近似求导。常用的数值微分方法有 : 一. 运用差商求数值微分 二.运用插值函数求数值微分 三. 运用样条插值函数求数值微分 四. 运用数值积分求数值微分.
Advertisements

第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
1 函数的微分 微分的定义 微分的几何意义 基本初等函数 的微分公式与 微分的运算法则 微分在近似计算中的应用 微分的近似计算 误差估计 基本初等函数的微分公式 和、差、积、商的微分法则 复合函数的微分法则.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第八节 函数图形的描绘. 一、渐近线 定义 : 1. 铅直渐近线 例如 有铅直渐近线两条 : 2. 水平渐近线 例如 有水平渐近线两条 :
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量. 再例如, 既容易计算又是较好的近似值 问题 : 这个线性函数 ( 改变量的主要部分 ) 是否 所有函数的改变量都有 ? 它是什么 ? 如何求 ?
Yunnan University Chapt 5. 微分学基本定理及其应用 导 数导 数 函数性质 中值定理 §1. 中值定理 §2. 泰勒公式 §3. 函数的升降、凸性与极值 §4. 平面曲线的曲率 §5. 待定型.
第三章 微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 --- 变化率 --- 切线 斜率 --- 相对误差 微分 描述函数变化程度 --- 函数值的增量 --- 绝对误差 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Fermat.
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
1 第二节 微 分 § 微分概念 § 微分公式和运算法则 § 高阶微分 § 微分在近似计算中的应用举例 误差估计.
复习 1. 隐函数求导法则直接对方程两边求导 2. 对数求导法 : 适用于幂指函数及某些用连乘, 连除表示的函数 3. 参数方程求导法 极坐标方程求导 转化 成立的条件?
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
第十二章 第二节 一元函数 y = f (x) 的微分 机动 目录 上页 下页 返回 结束 对二元函数的全增量是否也有类似这样的性质? 全微分.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三章 微分中值定理与 导数的应用. 3.1 微分中值定理 3.3 洛必达法则 3.2 泰勒公式 3.4 函数的单调性 3.9 曲率 3.8 函数图形的描绘 3.5 函数的极值 3.7 曲线的凹凸性及拐点 3.6 函数的最值及其应用.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
10.2 立方根.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第五节 函数的微分 一、微分的概念 二、微分运算法则 三、微分在近似计算中的应用 四、微分在估计误差中的应用 第二章
不确定度的传递与合成 间接测量结果不确定度的评估
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
问题1 设 问.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分在近似计算中的应用 返回.
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第四章 数值积分与数值微分 — 复合求积公式 — Romberg 算法.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第五节 第二章 函数的微分 一、微分的概念 二、微分运算法则 三、微分在近似计算中的应用 *四、微分在估计误差中的应用.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
§3 泰勒公式 多项式函数是最简单的函数.用多项 式来逼近一般的函数是近似计算的重 要内容,也是数学的研究课题之一.
第七章 无穷级数 数项级数 无穷级数 幂级数 付氏级数 表示函数 无穷级数是研究函数的工具 研究性质 数值计算.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
第四节 函数展开成幂级数 本节内容: 一、泰勒 ( Taylor ) 级数 二、函数展开成幂级数 第十二章 两类问题: 在收敛域内 求 和
第四模块 函数的积分学 第三节 第二类换元积分法.
第一章 函数与极限.
第14章 總體經濟政策之爭論:法則與權衡性.
第二章 函数 插值 — 分段低次插值.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第六模块 无穷级数 第五节 函数的幂级数展开 一、 麦克劳林 (Maclaurin) 公式 二、 直接展开法 三、 间接展开法.
第三节 泰勒公式 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析 目的-用多项式近似表示函数.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
锐角三角函数(1) ——正 弦.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第7章 特征理论 偏微分方程组 弱间断解与弱间断面.
Presentation transcript:

一、利用导数作近似计算 1. 近似计算 是用计算方法得到一定精度的计算结果. y 于是 o x

这就是利用导数作近似计算的公式. 它表明,当

例1. 如图,加工圆锥台时计算刀架应取角 . 解: 因 一般相当小,故 s 于是 从而

例2. 开方的近似计算. 常用近似公式( 充分小):

例3. 计算 的近似值. 解: 查表得 0.4848

误差估计 ——是估计近似值与精确值的差 例如:设计一根轴长度120毫米,加工后量得120.03毫米, 误差为 毫米. 误差为 毫米. 设计一个键销长度12毫米,加工后量得12.03毫米, 误差为 毫米. 称这种误差为绝对误差,表明了一个量与它的近似值之间 的差值,反映了某种近似程度.

上例中,尽管他们的绝对误差相等,但明显地,轴长 (120毫米)的精度要比键销(12毫米)的精度高。可见, 一个量的近似精度依赖于其绝对误差和这个量本身的大小, 故需计算绝对误差占总长度的百分比. 例如: 轴: 键销: 称这样的百分比为相对误差. 显然,轴长精度比键销 长的精度高得多. 一般地,有定义:

Def : 和相对误差

例4. 多次测量一根圆钢, 测得其直径的平均值为D=50毫米, 绝对误差不超过0.05毫米. 试计算其截面积, 并估计其误差. 解: S的绝对误差: 相对误差:

二、Taylor 公式 近似 简单函数 多项式 复杂的函数 表示 从而

为提高近似精度,可用二次多项式 (二阶近似) 且 一般地,可用 n 次多项式 (n阶近似) 且

例5. 上述公式表明,近似式阶数越高,近似程度越好. 近似程度是多少?

Theorem Taylor公式(也称马克劳林 ( Maclaurin ) 公式), 式中 叫做 Lagrange 余项.

证明:作辅助函数 再作辅助函数

利用Cauchy定理,得 Lagrange 余项还可写为: 又 因此余项又可表示为 称为皮亚诺(Peano)余项.

注1: Cauchy 余项 注2:由余项可见,不论缩小x或增大阶数n都可提高精度.

Lagrange 余项 或 Peano 余项

例5 中, 误差为

例6.

例7.

特别, 二项式展开公式

例8.

例9. 解:

例10. 解:

例11. 计算

例12. 求 注3. 函数的Taylor公式是函数无穷小的一种精细分析,也是在无穷小邻域将超越运算转化为整幂运算的手段,从而可将无理或超越函数的极限转化为有理式的极限而求解,大大简化计算.