第六章 微分与不定积分 第三节 不定积分.

Slides:



Advertisements
Similar presentations
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
Advertisements

目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数. 二、 连续与间断 一、 函数 三、 极限 函数与极限.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第三章 函数逼近 — 最佳平方逼近.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第3.4节 几乎连续函数与积分 第3.5节 微积分基本定理
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第十八章 含参变量的反常积分 教学目标: 1°使学生掌握含参变量反常积分概念; 2°使学生学会用定义证明含参变量反常积分收敛性。
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
全 微 分 欧阳顺湘 北京师范大学珠海分校
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
§2 闭区间上连续函数的性质 实数完备性理论的一个重要作用就是证 明闭区间上连续函数的性质,这些性质曾 经在第四章给出过.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第六章 微分与不定积分 第三节 不定积分

一.绝对连续函数的定义 现在回到我们最初的问题上来: 牛顿一莱布尼兹公式对何种函数成立?

从单调函数的例子及上面的讨论不难看到,有界变差函数的导数虽然可积,但也未必能使牛顿—莱布尼兹公式成立。因此条件还要加强,这正是下面要引入的 定义: 设f是[a,b]上的函数,若对任意 存在 使得对于[a,b]中的任意一组分点: 只要 便有 则称f是[a,b]上的绝对连续函数,或称f在[a,b]上绝对连续。

二.牛顿一莱布尼兹公式成立的充要条件 从定义立知, [a,b]上的绝对连续函数一定是一致连续的。绝对连续函数与有界变差函数又是什么关系呢?假设 是 [a,b]上的绝对连续函数,于是对任意 , 存在 ,使得只要 就有 取正整数N,使得 将分成N等分,设分点为

对[a,b]的任一分划 添加进去,得新的分划 ,于是 因此, 。这就是说,连续函数一定是有界变差函数。下面的定理指出:对绝对连续函数,牛顿—莱布尼兹公式是成立的。

定理9 设 上的绝对连续函数,则 上几乎处处可微, 上Lebesgue可积,且 定理9 设 上的绝对连续函数,则 上几乎处处可微, 上Lebesgue可积,且 证明:由上面的讨论,显然仅需证明等式 成立。

对于 则 上的可积函数,且

往证 上积分等度绝对连续的函数序列。任取 使得定义8中的不等式成立。设 内一列互不相交的区间,使得 , 则对任意正整数 , 有

从而对任意 ,有 进而

, , 由积分的绝对连续性易知

进而对任意开集 ,只要 ,便有 若 是 型集, 是开集 ,则可设 ,当k充分大时,也有 ,因此由 (为什么?)立得

现设 是任意可测集, ,则可找到 型集 。使 于是 这说明 具有积分等 度绝对连续性,由Vitali 定理立知

证毕。

定理10 设 上的Lebesgue可积函数,且对任意 则 则。 定理10 设 上的Lebesgue可积函数,且对任意 则

证明:由 及积分的基本性质不难得知对[a,b] 内任意区间I,有 ,于是对[a,b]内任意开集G,也有 ,对[a,b]内任意闭集F,令 则G是开集,注意到 ,从而

现设E是[a,b]内任一可测集,则对任意正整数n, 存在闭集 ,使得 ,由 积分的绝对 连续性知对任意 ,存在N, 当 时 ,有 因此,

由 的任意性知 。 如果 ,则 , ,至少有一个是 正测度集。 从而存在正整数n, 使 或 不妨设 则

这与上面的证明矛盾,故必有 证毕。 定理11 设 是 上的Lebesgue可积函数, 其中 c是任意常数,则 上的绝对连续函数, 且 上的 证明:由积分的绝对连续性立得, 绝对连 续函数, 于是 几乎处处可微, 且 在 上可积,

。 并有 又由F的定义知 ,所以 对任意 ,有 。 由定理10便得 。 至此我们得到了:一个函数等于其导数的Lebesgue积分当且仅当该函数为绝对连续函数。由此可以证明,对于绝对连续函数,分部积分公式及换元公式都是成立的。具体说来即有下面的

推论1(分部积分法) 设 , 均为 上的绝对连续,则 推论1(分部积分法) 设 , 均为 上的绝对连续,则 推论2(换元法) 若设 是 上的可积函数, 是单调绝对连续函数, 推论1与推论2的证明作为练习留给读者。