第3.4节 几乎连续函数与积分 第3.5节 微积分基本定理

Slides:



Advertisements
Similar presentations
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
Advertisements

目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第三章 函数逼近 — 最佳平方逼近.
数学分析 江西财经大学 统计学院 2012级 密码: sxfx2012
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第六章 微分与不定积分 第三节 不定积分.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
全 微 分 欧阳顺湘 北京师范大学珠海分校
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
计算机数学基础 主讲老师: 邓辉文.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
实数与向量的积.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§2 方阵的特征值与特征向量.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
1.2.2 充要条件 高二数学 选修 1-1 第一章 常用逻辑用语.
Presentation transcript:

第3.4节 几乎连续函数与积分 第3.5节 微积分基本定理 第3.4节 几乎连续函数与积分 第3.5节 微积分基本定理 第三章 测度与积分 北京师范大学数学科学学院 授课教师:刘永平

(广义)R-积分与L-积分的关系(二) 基本内容 (1)R-积分与L-积分的关系(部分); (2)广义R-积分与L-积分关系; (3)第二积分中值公式; (4) 微积分基本定理; (5) 一些例子; (6) 小结.

回忆前次课的记号和部分内容 记号:用 表示n维矩形D的一个分法. 以下假定:实函数 f 在矩形上有界.

上阶梯函数与下阶梯函数 黎曼大和与小和

本次课继续证明: 定理3. 设D是n维矩形. (1)若f 在D上是黎曼可积的,则f 在D上是勒贝格可积的,且其两种类型积分值相同. (2)若 f 是D上的有界函数. 则, f 在D上为黎曼可积函数的充分必要条件是f 在D上几乎处处连续.

上次课已经证明了:结论(1)以及结论(2)的必要性部分. 下面证明结论(2)的充分性部分. 即, 若f是D上的几乎处处连续的有界函数,则f是黎曼可积的.为此,只需证:

等价地,只需证:对任意的分法列 满足 ,有

例子(判断函数是否黎曼可积) 例4.1. 用 表示n维有理点集. 定义函数f(x)= 其中D 为内部不空的方块. 则 .

例4.2. 把开区间(0,1)的全体有理数写成可数集 . 令开集 例4.2. 把开区间(0,1)的全体有理数写成可数集 . 令开集 (见例3.3). 证明:函数 不是黎曼可积的.

例4.3. 黎曼函数是(0,1)上的函数,由下列方式定义: 则f(x)在(0,1)上黎曼可积.

例4.4.有界区间上的有界单调函数是黎曼可积的.

广义R-积分与L-积分的关系 定理4. 设 f 是一个n维开区域G上的广义R-可积的函数. 则 f 在G上为L可积的充分必要条件是f 为G上广义绝对R-可积的函数.

为叙述简便,仅就一元的一个情况证明. 假定函数 f 定义在区间 上且在 的任何有限子区间上黎曼可积.

如果极限 存在且有限,则称f 在 上广义黎曼可积. 如果|f | 在这个区间也广义黎曼可积, 则称称f 在 上广义绝对黎曼可积. 一个特殊情形的广义R积分定义 如果极限 存在且有限,则称f 在 上广义黎曼可积. 如果|f | 在这个区间也广义黎曼可积, 则称称f 在 上广义绝对黎曼可积.

反例: 例4.5. 函数f 有如下方式定义: 则,f 在R上广义R可积,但它不是L可积.

微积分基本定理 原函数定义:若f 定义在[a,b]上,且存在F,使得 则称F是f 在[a,b]上的一个原函数. 定理:设函数 若f 在[a,b]上有原函数F,则

小结 (1) 当D为矩形时,则 且 (2) 当G为开集时, 则G上的广义绝对可积函数类是 的子集. (3) 当 时,若f 还是D上R-可积或G上广义绝对R-可积函数时,f的积分计算可转化为后两类积分的计算.

(4) 如一个L-可积函数f与一个R-可积函数(或广义绝对R可积函数)g几乎处处相等时, f的积分性质可以转化为g的类似性质处理

习题3.4. 2, 3, 4, 7, 8, 9, 11, 12. 习题3.5. 3, 5, 6, 8, 9.