第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.

Slides:



Advertisements
Similar presentations
第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
Advertisements

高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Differentiation 微分 之二 以公式法求函數的微分. Type 函數形式 Function f (x) Derivative d f (x) /d x c=constant 常數 c0 Power of x xaxa a x a-1 Trigonometric 三角函數 sin x cos.
一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
1 函数的微分 微分的定义 微分的几何意义 基本初等函数 的微分公式与 微分的运算法则 微分在近似计算中的应用 微分的近似计算 误差估计 基本初等函数的微分公式 和、差、积、商的微分法则 复合函数的微分法则.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
第二章 函数微分学 §2.3 函数的微分 本节内容 一.微分的定义 二.微分的几何意义 三.微分公式与运算法则.
第三章 微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 --- 变化率 --- 切线 斜率 --- 相对误差 微分 描述函数变化程度 --- 函数值的增量 --- 绝对误差 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Fermat.
1 主要内容 : 1. 微分的概念. 2. 微分的几何意义. 3. 微分的运算 4. 微分在近似计算中的应用 2.5 微分.
第四节 多元复合函数的求导法则 在本节中, 我们把一元函数微分学中复合函数的求导法则推 广到多元复合函数的情况. 下面按照多元复合函数不同的复合 情形, 分三种情形讨论. 1. 复合函数的中间变量均为一元函数的情形. 定理 1. 如果函数 u=φ(t) 及 v=ψ(t) 都在点 t 可导, 函数 z=f(u,v)
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
1 第二节 微 分 § 微分概念 § 微分公式和运算法则 § 高阶微分 § 微分在近似计算中的应用举例 误差估计.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
第三章 导数与微分 第二节 求导法则 第三节 微分及其在近似计算中的应用 微分及其在近似计算中的应用 第一节 导数的概念.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
§5 微分. 一 问题的提出 1 面积问题 设有一边长为 的正方形 2 自由落体问题 二 微分的定义 1 定义.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
§1 导数的概念 §1 导数的概念 §2 求导法则 §2 求导法则 §3 参变量函数的导数 §3 参变量函数的导数 §4 高阶导数 §4 高阶导数 §5 微分§5 微分.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
全腦快速學習方法體系簡介.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
3.8 复合函数的导数 [法则4] 如果函数y=f(u)对u可导,函数u=g(x)对x可导,
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
初等函数的导数 一. 函数的和、差、积、商的导数: 定理: 设函数 u = u(x) 及 v = v(x) 在点 x 可导,
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 第一节 导数的概念 第二节 求导法则 第三节 微分及其在近似计算中的应用.
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
5.1 自然對數函數:微分 5.2 自然對數函數:積分 5.3 反函數 5.4 指數函數:微分與積分 5.5 一般底數的指數函數和應用 5.6 反三角函數:微分 5.7 反三角函數:積分 5.8 雙曲函數.
导数的基本运算.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
Math2-4 内容预告 授 课 内 容 取对数求导法 导数基本公式 高阶导数 同学们好 现在开始上课 Math2-4.
第三模块 函数的微分学 第三节 复合函数的导数 一、复合函数的求导法则 二、复合函数的求导举例.
第四模块 函数的积分学 第三节 第二类换元积分法.
第一章 函数与极限.
1 在平面上畫出角度分別是-45°,210°,675°的角。 (1) (2) (3)
第一章 函数与极限 第一节 函 数 一、函数的概念 二、函数的表示法 三、分段函数 四、反函数 五、初等函数 六、函数的基本性态
第二章 三角函數 2-5 三角函數的圖形.
第六节 无穷小的比较.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第三模块 函数的微分学 第一节 导数的概念 一、瞬时速度 曲线的切线斜率 二、导数的定义 三、导数的几何意义 四、导数的物理意义 五、导函数
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第二模块 函数、极限、连续 第七节 无穷小量的比较
三角 三角 三角 函数 已知三角函数值求角.
Presentation transcript:

第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法

一、导数的四则运算 定理 1 设函数 u(x)、v(x) 在 x 处可导, 则它们的和、差、积与商 在 x 处也可导, 且 (u(x)  v(x)) = u(x)  v (x); (u(x)v(x)) = u(x)v(x) + u(x)v(x);

  证 上述三个公式的证明思路都类似,我们只证第二个. 因为 u (x + x) - u(x) = u, 即 u (x + x) = u(x) + u, 同理有 v (x + x) = v(x) + v . 令 y = u(x)v(x), 则 y = u(x + x) v(x + x) - u(x)v(x) = [u(x) + u] · [v(x) + v] - u(x)v(x) = u(x)v + v(x)u + u v .

所以

推论 1 (cu(x)) = cu(x) (c 为常数). 推论 2

  例 1 设 f (x) = 3x4 – ex + 5cos x - 1,求 f (x) 及 f (0).  (5cos x) = 5(cos x), 又(x4) = 4x3, (cos x) = - sin x, (ex) = ex, (1) = 0, 故 f (x) = (3x4 - ex + 5cos x - 1)  = (3x4)  -(ex ) + (5cos x)  - (1) = 12x3 - ex - 5sin x . f (0) = (12x3 - ex - 5sin x)|x=0 = - 1

例 2 设 y = xlnx , 求 y . 解 根据乘法公式,有 y = (xlnx) = x (lnx) + (x)lnx

例 3 设 求 y . 解 根据除法公式,有

例 4 设 f (x) = tan x, 求 f (x). 解 即 (tan x) = sec2x . 同理可得 (cot x) = - csc2x .

例 5 设 y = sec x, 求 y . 解 根据推论 2,有 即 (sec x) = sec x tan x . 同理可得 (csc x) = - csc x cot x .

另外可求得 (以后补证)

二、复合函数的微分法 定理 2 设函数 y = f (u), u =  (x) 均可导, 则复合函数 y = f ( (x)) 也可导. 且 或 或

证 设变量 x 有增量 x,               相应地变量 u 有增量 u, 从而 y 有增量 y. 由于 u 可导, 即

  推论 设 y = f (u) , u =  (v), v =  (x) 均可导,则复合函数 y = f [ ( (x))] 也可导, 且

例 6 设 y = (2x + 1)5,求 y .   解 把 2x + 1 看成中间变量 u, 将 y = (2x + 1)5看成是 y = u5,u = 2x + 1 复合而成, 由于 所以

例 7 设 y = sin2 x,求 y .   解 这个函数可以看成是 y = sin x · sin x, 可利用乘法的导数公式, 这里, 我们用复合函数求导法. 将 y = sin2 x 看成是由 y = u2,u = sin x 复合而成. 而 所以

例 9 设 y = etan x,求 y .   解  y = etan x 可以看成是由 y = eu,u = tan x 复合而成, 所以   复合函数求导数熟练后,中间变另可以不必写出.

例 10 求 y . 解 将中间变量 u = 1 - x2 记在脑子中. 这样可以直接写出下式

例 12 设 f (x) = arcsin(x2) ,求 f (x). 解

例 13 求 y . 解 这个复合函数有三个复合步骤 把这些中间变量都记在脑子中.

例 15 求 y . 解

例 16 ,求 y .   解 先用除法的导数公式,遇到复合时,再用复合函数求导法则.

例 17 设 y = sin(xln x), 求 y . 解 先用复合函数求导公式, 再用乘法公式 y = cos(xln x) · (xln x) = cos(xln x) · (x · (ln x) + x  ln x ) = (1 + ln x)cos(x ln x) .

例 19 解 先用复合函数求导公式, 再用加法求导公式, 然后又会遇到复合函数 的求导.

例 20 设 y = sh x, 求 y . 解 即 (sh x)  = ch x . 同理可得 (ch x)  = sh x .

补证一下 (x) = x -1 . 所以 (x) = (elnx) = elnx · (ln x) 