第五章 不定积分 一、不定积分的概念和性质 5.1 原函数与不定积分 通过对求导和微分的学习,我们可以从一个函数

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
引 言 第三章 一元函数积分学 积分学分为不定积分与定积分两 部分.不定积分是作为函数导数的 反问题提出的,而定积分是作为微 分的无限求和引进的,两者概念不 相同,但在计算上却有着紧密的内 在联系.
换元积分法 直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法 —— 换元积分法和分部积分法。 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的.
1 、不定积分的概念与性质 2 、不定积分的计算 2.1 第一换元积分法 2.2 分步积分法 3 、定积分的概念与计算 第六章 一元函数积分学.
换元积分法 一、第一类换元积分法 二、第二类换元积分法 一、第一类换元法 例1例1 原因在于被积函数 cos 2x 与公式 中的被 积函数不一样. 如果令 u=2x ,则 cos2x=cos u , d u=2dx , 从而 所以有 ? 分析.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第八章 不定积分 第一节 不定积分概念与基本积分公式 第二节 换元积分法与分部积分法 第三节 有理函数和可化为有理函数的不定积分.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
经济数学 第四章 不定积分. 4.1 不定积分的概念与性质 4.2 不定积分的性质 4.3 不定积分的换元积分法 4.4 不定积分的分部积分法.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第五节 积分表的使用 一、关于积分表的说明 二、例题 结束. ( 1 )常用积分公式汇集成的表称为积分表. ( 2 )积分表是按照被积函数的类型来排列的. ( 4 )积分表见《高等数学》(四版)上册 (同济大学数学教研室主编)第 452 页. ( 3 )求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
8.2.1 换元积分法.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
3.8 复合函数的导数 [法则4] 如果函数y=f(u)对u可导,函数u=g(x)对x可导,
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第6章 不定积分 6.1不定积分的概念与基本积分公式 6.2换元积分法 6.3分部积分法 6.4几类特殊函数的不定积分.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
第四章 不定积分.
习 题 课.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
导数的基本运算.
计算机数学基础 主讲老师: 邓辉文.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
第一章 函数与极限.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第五章 不定积分 一、不定积分的概念和性质 5.1 原函数与不定积分 通过对求导和微分的学习,我们可以从一个函数 第五章 不定积分 一、不定积分的概念和性质 5.1 原函数与不定积分 通过对求导和微分的学习,我们可以从一个函数 y=f(x)出发,去求它的导数f'(x) 那么,我们能不能从一个函数的导数f’(x)出发, 反过来去求它是哪一个函数(原函数)的导数呢? [定义] 已知f(x)是定义在区间I上的一个函数,如果存 在函数F(x),使得在区间 I 上的任何一点x处都有 F’(x)=f(x),那么称函数F(x)为函数f(x)在区间I 上的一个原函数。

例5.1 求下列函数的一个原函数: ⑴ f(x)=2x ⑵ f(x)=cosx 解:⑴∵(x2)'=2x ∴x2是函数2x的一个原函数 ⑵∵(sinx)'=cosx ∴sinx是函数cosx的一个原函数 这里为什么要强调是一个原函数呢?因为一个函数 的原函数不是唯一的。 例如在上面的⑴中,还有(x2+1)'=2x, (x2-1)'=2x 所以 x2、x2+1、x2-1、x2+C (C为任意常数) 都是函数f(x)=2x的原函数。

[定理5.1] 设F(x)是函数f(x)在区间I上的一个原函数, C是一个任意常数,那么, ⑴ F(x)+C也是f(x)的原函数 ⑵ f(x)在区间I上的全体原函数可以表示 为F(x)+C 证明: ⑴∵[F(X)+C]'=F'(x)+(C)'=f(x) ∴F(x)+C也是f(x)的原函数 ⑵略

[说明] ⑴函数f(x)如果有一个原函数F(x),那么它就有 无穷多个原函数; ⑵函数f(x)的全体原函数叫做函数f(x)的不定积 分,记作∫f(x)dx, 其中∫叫做积分号,f(x)叫做被积函数,x叫做积 分变量。 ⑶求函数f(x)的不定积分就是求它的全体原函数, 因此,∫f(x)dx=F(x)+C 其中C是任意常数,叫做积分常数。

例5.2 求下列不定积分 ⑴ ∫x5dx ⑵ ∫sinxdx 解: ⑴∵ 是x5的一个原函数 ∴ ⑵∵-cosx是sinx的一个原函数

5.2 不定积分的性质 ⑴ [∫f(x)dx]'=f(x) 该性质表明,如果函数f(x)先求不定积分再求导, 所得结果仍为f(x) ⑵ ∫F'(x)dx=F(x)+C 该性质表明,如果函数F(x)先求导再求不定积分, 所得结果与F(x)相差一个常数C ⑶ ∫kf(x)dx=k∫f(x)dx (k为常数) 该性质表明,被积函数中不为零的常数因子可以 提到积分号的前面 ⑷ ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx 该性质表明,两个函数的和或差的不定积分等于 这两个函数的不定积分的和或差

例5.4 求∫(9x2+8x)dx 解:∫(9x2+8x)dx=∫9x2dx+∫8xdx =3∫3x2dx+4∫2xdx=3x3+4x2+C 例5.5 求 解: 例5.6 求∫(sinx+cosx)dx 解:∫(sinx+cosx)dx=∫sinxdx+∫cosxdx =-cosx+sinx+C

5.3 基本积分公式 由于积分运算是求导运算的逆运算,所以由基本求导公式反推,可得基本积分公式 ⑴ ∫0dx=C ⑵ ∫xndx= (n≠-1) ⑶ ⑷ ⑸ ∫exdx=ex+C ⑹ ∫sinxdx=-cosx+C, ∫cosxdx=sinx+C ⑺ ∫sec2xdx=tgx+C ⑻ ∫csc2xdx=-ctgx+C ⑼ =arcsinx+C ⑽ =arctgx+C

例5.7 求 解: 说明:冪函数的积分结果可以这样求,先将被积函 数的指数加 1,再把指数的倒数放在前面做系数。 例5.8 求 例5.9 求∫10xdx 解:∫10xdx= +C

二、不定积分的计算 5.4 直接积分法 对被积函数进行简单的恒等变形后直接用 不定积分的性质和基本积分公式即可求出不定 积分的方法称为直接积分法。 运用直接积分法可以求出一些简单函数的 不定积分。

例5.10 求 解: 例5.11 求 例5.12 求

例5.14 求 解: 例5.15 求函数f(x)=2x的不定积分中满足F(0)=1 的原函数。 解:∵∫f(x)dx=∫2xdx=x2+C ∴F(x)=x2+C 由F(0)=1解得C=1, 于是F(x)=x2+1 题中的条件 F(0)=1 是用来确定积分常数C的值 的条件,这种条件叫做初始条件。

5.5 凑微分法 如果被积函数的自变量与积分变量不相同, 就不能用直接积分法。 例如求∫cos2xdx,被积函数的自变量是2x, 积分变量是x。 这时,我们可以设被积函数的自变量为u, 如果能从被积式中分离出一个因子u’(x)来, 那么根据∫f(u)u'(x)dx=∫f(u)du=F(u)+C 就可以求出不定积分。 这种积分方法叫做凑微分法。

[讲解例题] 例5.16 求∫2sin2xdx 解:设u=2x,则du=2dx ∫2sin2xdx=∫sin2x·2dx=∫sinudu =-cosu+C=-cos2x+C 注意:最后结果中不能有u,一定要还原成x。 例5.17 求∫2x(x2+1)6dx 解:设u=x2+1,则du=2xdx ∫2x(x2+1)6dx=∫(x2+1)6·2xdx=∫u6du = u7+C= (x2+1)7+C

例5.18 求 解:设u=x2+1,则du=2xdx 例5.19 求 解: ,设u=cosx,则du=-sinxdx 例5.20 求 解:设u=x2,则du=2xdx

当计算熟练后,换元的过程可以省去不写。 例5.21 求 解: 例5.22 求∫sin3xcosxdx 解:∫sin3xcosxdx=∫sin3xd(sinx)= sin4x+C

5.6 换元积分法 例如,求 , 把其中最难处理的部分换元, 令 ,则原式= , 再反解得 x=u2+1,则dx=2udu,代入得 = =2[u+ln|u-1|]+C= 这就是换元积分法。

例5.25 求 解:令 ,则x=t2,dx=2tdt 如被积函数含有根式 ,可用x=asint换元。 例5.27 求 解:设x=asint,则t=arcsin , dx=acostdt, =acost

5.7 分部积分法 考察函数乘积的求导法则: [u(x)·v(x)]'=u'(x)·v(x)+u(x)·v'(x) 两边积分得 5.7 分部积分法 考察函数乘积的求导法则: [u(x)·v(x)]'=u'(x)·v(x)+u(x)·v'(x) 两边积分得 u(x)·v(x)=∫u'(x)v(x)dx+∫u(x)v'(x)dx 于是有 ∫u(x)·v'(x)dx=u(x)·v(x)-∫u'(x)·v(x)dx 或表示成 ∫u(x)dv(x)=u(x)·v(x)-∫v(x)du(x) 这一公式称为分部积分公式。

[讲解例题] 例5.28 求∫xexdx 解:令 u(x)=x,v'(x)=ex 则原式为∫u(x)·v'(x)dx的形式 ∵(ex)'=ex ∴v(x)=ex, 由分部积分公式有 ∫xexdx=x·ex-∫exdx=xex-ex+C 例5.31求∫xcosxdx 解:令 u(x)=x2,v'(x)=cosx,则v(x)=sinx 于是∫xcosxdx=xsinx-∫sinxdx =xsinx+cosx+C

例5.32求∫x2sinxdx 解:令u(x)=x2,v'(x)=sinx,则v(x)=-cosx 于是∫x2sinxdx=-x2cosx+2∫xcosxdx =-x2cosx+2[xsinx-∫sinxdx] =-x2cosx+2xsinx+2cosx+C 由此可见:作一次分部积分后,被积函数中幂函数的 次数可以降低一次。如果所得到的积分式还需要用分 部积分法解,那么,可以再用分部积分公式做下去。 为了简化运算过程,下面介绍分部积分法的列表 解法。

[分部积分法的列表解法] 例如:求 ∫x2sinxdx x2 → sinx ∫x2sinxdx =-x2cosx+∫2xcosxdx - ↓积分 ∫x2sinxdx =-x2cosx+∫2xcosxdx 求导↓ -cosx 2x 求导↓   2 ↓积分 -sinx -+ =-x2cosx +2xsinx-∫2sinxdx 求导↓   0  + ↓积分 +cosx =-x2cosx+2xsinx +2cosx+C

再如:求∫xlnxdx x lnx 求导↓ ↓积分 1 ? 这说明把lnx放在右边用分部积分法解不下去。 lnx → x 求导↓ + ↓积分  - 则

[一般原则] 幂函数、对数函数应放在左边, 指数函数、三角函数应放在右边。 例5.33 求∫exsinxdx 解:∫exsinxdx=exsinx-∫excosxdx =exsinx-excosx-∫exsinxdx 移项得∫exsinxdx= ex(sinx-cosx)+C

[作业] P.218 1 ⑶⑷⑸⑺⑻,2 ⑴~⑹ 4 ⑶⑷⑸,5 ⑵⑶⑷⑸⑹⑺⑻ P.245  1 ⑵⑷⑸⑹, 2 ⑵⑶⑷⑸⑺⑻⑼⑽⑾⑿,      3 ⑴⑵⑶⑷⑸⑹⑻,4 ⑴⑵⑸⑹⑻⑼⑽⑾  P.247 1 ⑸⑹⑺⑻⑽, 2 ⑶⑹⑺⑻,3 ⑵⑶⑷,      4 ⑴⑶⑷