数学第三册(选修I) 第二章《导数》 导数的应用.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

Yunnan University Chapt 5. 微分学基本定理及其应用 导 数导 数 函数性质 中值定理 §1. 中值定理 §2. 泰勒公式 §3. 函数的升降、凸性与极值 §4. 平面曲线的曲率 §5. 待定型.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
第二章 二次函数 第二节 结识抛物线
第二章 函数、导数及其应用 第十四节 导数在研究函数中的应用(二).
一次函数的图象复习课 南华实验学校 初二(10)班 教师:朱中萍.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第六章 微分中值定理及其应用.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
2-7、函数的微分 教学要求 教学要点.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
数形结合.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
2.1.2 指数函数及其性质.
实数与向量的积.
第四章 一次函数 4. 一次函数的应用(第1课时).
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
3.1.3 导数的几何意义.
(1)求函数的增量Δf=Δy=f(x2)-f(x1); (2)计算平均变化率
3.1.3 导数的几何意义.
函 数 连 续 的 概 念 淮南职业技术学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
直线和圆的位置关系 ·.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
一元二次不等式解法(1).
1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义.
1.4.3正切函数的图象及性质.
高中数学选修 导数的计算.
1.4.3正切函数的图象及性质.
3.3.2《导数在研究函数 中的应用-极值》.
(3.3.2) 函数的极值与导数.
§3.7函数的单调性 y x.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
欢迎各位领导同仁 莅临指导!.
§3.1函数的单调性 y x.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
幂 函 数.
人教A版 必修一 3.1·函数与方程 方程的根与函数的零点.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
导数及其应用教材分析.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
几种常见函数的 导 数.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
3.3 导数在研究函数中的应用   3.3.1 函数的单调性与导数.
函数与方程 更多模板请关注:
Presentation transcript:

数学第三册(选修I) 第二章《导数》 导数的应用

复习 1 、 某点处导数的定义—— 2 、 某点处导数的几何意义—— 这一点处的导数即为这一点处切线的斜率 3 、 导函数的定义——

4、由定义求导数的步骤(三步法)

5、 求导的公式与法则—— 如果函数 f(x)、g(x) 有导数,那么 6、 求导的方法—— 定义法 公式法

2、设f(x)=ax3-bx2+cx,且f `(0)=0, f `(1)=1,f `(2)=8,求a、b、c 练习: 1、求下列函数的导数 (1)y=(x2-3x+2)(x4+x2-1) (2)y=(x/2+t)2 2、设f(x)=ax3-bx2+cx,且f `(0)=0, f `(1)=1,f `(2)=8,求a、b、c 3、抛物线f(x)=x2-2x+4在哪一点处的切线平行于x轴?在哪一处的切线与x轴的交角为450?

1、确定函数f(x)=x2-4x+3在哪个区间内是增函数?哪个区间内是减函数? 引例 1、确定函数f(x)=x2-4x+3在哪个区间内是增函数?哪个区间内是减函数? 在(-∞,2)上是减函数; 在(2,+∞)上是增函数。

2、确定函数f(x)=2x3-6x2+7在哪个区间内是增函数?哪个区间内是减函数? 引例 2、确定函数f(x)=2x3-6x2+7在哪个区间内是增函数?哪个区间内是减函数? 用定义法判断函数单调性的步骤: (1)在给定的区间内任取x1<x2; ( 2 ) 作差f(x1)-f(x2)并变形; (3)判断符号; (4)下结论。

单调性定义讨论函数单调性是根本,但有时十分麻烦,尤其是在不知道函数图象时,如: f(x)=2x3-6x2+7。 发现问题 单调性定义讨论函数单调性是根本,但有时十分麻烦,尤其是在不知道函数图象时,如: f(x)=2x3-6x2+7。 这就需要我们寻求一个新的方法。

引入: 函数单调性体现出了函数值y随自变量x的变化而变化的情况, 而导数也正是研究自变量的增加量与函数值的增加量之间的关系 于是我们设想一下能否利用导数来研究单调性呢?

探究 研究函数二次y=x2-4x+3的图象; 观察一次函数y=kx+1的图象; 观察三次函数y=x3的图象; 观察某个函数f(x)的图象。

分析:从图形看 若函数在区间(a,b)内单调递增,我们发现在(a,b)上切线的斜率为正,即 在(a,b)内的每一点处的导数值为正 若函数在区间(a,b)内单调递减,发现在(a,b)上切线的斜率为负,即在(a,b)内的每一点处的导数值为负,

结论: 设函数y=f(x)在某个区间内有导数,如果在这个区间内y`>0,那么y=f(x)为这个区间内的增函数;如果在这个区间内y`<0,那么y=f(x)为这个区间内的减函数. y`>0 增函数 y`<0 减函数 判断函数单调性的常用方法: (1)定义法 (2)导数法

在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小和作图并不很容易.如果利用导数来判断函数的单调性就比较简单. 知识提炼 定理: 一般地,函数y=f(x)在某个区间内可导: 如果恒有 ,则 是增函数。 如果恒有 ,则 是减函数。 如果恒有 ,则 是常数。 在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小和作图并不很容易.如果利用导数来判断函数的单调性就比较简单. 注意:函数y=f(x)在某个区间内为常数,当且仅当f'(x)=0在该区间内恒成立时,否则可能使f'(x)=0的点只是“驻点”(曲线在该点处的切线与x轴平行),实际上,若在某区间上有有限个点使f'(x)=0,在其余的点恒有f'(x)>0,则f(x)仍为增函数(减函数的情况完全类似) 例如: 函数f(x)=x3在(-∞,+∞)内,当x=0时, f'(x)=0, 当x≠0时, f'(x)=3x2>0, y=f(x)在(-∞,+∞)内为增函数

导数的应用 用导数研究函数的单调性

判断方法 一般地,设函数y=f(x)在某个区间内可导, 如果在这个区间内f′(x)>0, 则f(x)为这个区间内的增函数; 如果在这个区间内f′(x)<0, 则f(x)为这个区间内的减函数. 注意:如果在某个区间内恒有f′(x)=0, 则f(x)为常数函数。 研究数学问题的一般方法: 从特殊到一般;从简单到复杂。

结论应用:由以上结论可知,函数的单调性与其导数有关,因此今后我们可以利用导数法去探讨函数的单调性下面举例说明:

例题讲解 例1、求证:函数y=x3+1在 上是增函数。 解题步骤: 1、求函数的导函数; 2:判断导函数在指定区间上的符号; 3、下结论。

例2、确定函数f(x)=2x3-6x2+7在哪个区间内是增函数?哪个区间内是减函数? 根据导数确定函数的单调性一般需三步: 1.确定函数f(x)的定义域; 2.求出函数的导数; 3.解不等式f ′(x)>0,得函数单增区间; 解不等式f′(x)<0,得函数单减区间。

例1、确定函数y=2x3-6x2+7的单调区间 导数的应用一、判断单调性、求单调区间 用导数法确定函数的单调性时的步骤是: (1)求出函数的导函数 (2)求解不等式f `(x)>0,求得其解集, 再根据解集写出单调递增区间 (3)求解不等式f``(x)<0,求得其解集, 再根据解集写出单调递减区间 注、单调区间不 以“并集”出现。

课堂练习 1、确定下列函数的单调区间。 单调增区间为:(4,+∞)和(-∞,2) 单调减区间为:(2,4) 单调增区间为:(-1,1) 单调减区间为:(-∞,-1)和(1,+∞)

课堂练习 2,设f/(x)是函数f(x)的导函数,y=/(x)的图象如左图所示,则y=(x)的图象最有可能的是( ) (B) y 1 2 O 1 2 (A) (C) (D) x y O 1 2

课堂总结 1.函数导数与单调性的关系: 若函数y=f(x)在某个区间内可导, 如果f ′(x)>0, 则f(x)为增函数; 2.本节课中,用导数去研究函数的 单调性是中心,能灵活应用导数解 题是目的,另外应注意数形结合在 解题中应用。 3.掌握研究数学问题的一般方法: 从特殊到一般;从简单到复杂。

思考题 函数f(x)=2x3-6x2+7 1:能不能画出该函数的草图?

作业布置 课堂作业:课本p42习题2.4 1,2 课外作业:

函数的极值与导数 【复习与思考】 已知函数 f(x)=2x3-6x2+7 (1)求f(x)的单调区间,并画出其图象;

【函数极值的定义】 设函数y=f(x)在x=x0及其附近有定义, (1)如果在x=x0处的函数值比它附近所有各点的函数值都大,即f(x)<f(x0),则称 f(x0)是函数 y=f(x)的一个极大值.记作:y极大值=f(x0) (2)如果在x=x0处的函数值比它附近所有各点的函数值都小,即f(x)>f(x0),则称 f(x0)是函数 y=f(x)的一个极小值.记作:y极小值=f(x0) 极大值与极小值统称为极值,x0叫做函数的极值点.

观察上述图象,试指出该函数的极值点与极值,并说出哪些是极大值点,哪些是极小值点. y a b x1 x2 x3 x4 O x 观察上述图象,试指出该函数的极值点与极值,并说出哪些是极大值点,哪些是极小值点.

【关于极值概念的几点说明】 (1)极值是一个局部概念,反映了函数在某一点附近的大小情况; (2)极值点是自变量的值,极值指的是函数值; (3)函数的极大(小)值可能不止一个,而且函数的极大值未必大于极小值; (4)函数的极值点一定在区间的内部,区间的端点不能成为极值点。而函数的最值既可能在区间的内部取得,也可能在区间的端点取得。

函数y=f(x)在极值点的导数值为多少?在极值点附近的导数符号有什么规律? 【问题探究】 函数y=f(x)在极值点的导数值为多少?在极值点附近的导数符号有什么规律? y a b x1 x2 x3 x4 O x

(1)如果f /(x0)=0, 并且在x0附近的左侧 f /(x0)>0 【函数的极值与导数的关系】 (1)如果f /(x0)=0, 并且在x0附近的左侧 f /(x0)>0 右侧f /(x0)<0, 那么f(x0)是极大值 (2)如果f /(x0)=0, 并且在x0附近的左侧 f /(x0)<0 右侧f /(x0)>0, 那么f(x0)是极小值

用导数法求解函数极值的步骤: (1)    求导函数f `(x); (2)    求解方程f `(x)=0; (3)    检查f `(x)在方程f `(x)=0的根的左右 的符号,并根据符号确定极大值与极小值. 口诀:左负右正为极小,左正右负为极大。

例题: 求函数 的极值. 【课堂练习】课本P42

例2:求函数 的极值.

【思考交流】 导数值为0的点一定是函数的极值点吗? 对于可导函数而言,其极值点一定是导数为0的点,反之导数为0的点不一定是函数的极值点.因此:导数值为0的点是该点为极值点的必要非充分条件.

一、复习: 1、 ; 2、 3、求y=x3—27x的 极值。

导数的应用之三、求函数最值. 在某些问题中,往往关心的是函数在整个定义域区间上,哪个值最大或最小的问题,这就是我们通常所说的最值问题. 求f(x)在闭区间[a,b]上的最值的步骤: (1)求f(x)在区间(a,b)内极值(极大值或极小值) (2)将y=f(x)的各极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个最小值 表格法

a 发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______ X2 o a X3 b x1

注: 求函数最值的一般方法: 一是利用函数性质,二是利用不等式 三是利用导数 在区间 上求函数 的最大值与最小值 的步骤: 1、函数 在内有导数 ; 2、求函数 在内的极值 3、将函数在内的极值与比较,其中最大的一个为最大值 ,最小的一个为最小值

例1、求函数f(x)=x2-4x+6在区间[1,5]内 的最大值和最小值 法一 、 将二次函数f(x)=x2-4x+6配方,利用二次函数单调性处理

- + 例1、求函数f(x)=x2-4x+6在区间[1,5]内 的极值与最值 法二、 解、 f ’(x)=2x-4 得x=2 (1,2) 2 (2,5) 5 y, y - + 3 2 11 故函数f(x) 在区间[1,5]内的极小值为3, 最大值为11,最小值为2

课本练习 例1、求 函数在区间 上的最大值与最小值。 解:先求导数得, 令 =0即 解得 导数 的正负以及 ,如下表 例1、求 函数在区间 上的最大值与最小值。 解:先求导数得, 令 =0即 解得 导数 的正负以及 ,如下表 X -2 (-2,-1) -1 (-1,0) (0,1) 1 (1,2) 2 y/ _ + - y 13 4 5 从上表知,当 时,函数有最大值13,当 时,函数有最小值4

在日常生活中,常常会遇到什么条件下可以使材料最省,时间最少,效率最高等问题,这往往可以归结为求函数的最大值或最小值问题。 例2 用边长为60CM的正方形铁皮做一个无盖的水箱,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,问水箱底边的长取多少时,水箱容积最大,最大容积是多少? 例3、已知某商品生产成本C与产量P的函数关系为C=100+4P,价格R与产量P的函数关系为R=25-0.125P,求产量P为何值时,利润L最大。

四、小结: 1、闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值。 2、函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个。 3、在解决实际应用问题中,关键在于建立数学模型和目标函数;如果函数在区间内只有一个极值点,那么根据实际意义判断是最大值还是最小值即可,不必再与端点的函数值进行比较。

思考、已知函数f(x)=x2-2(m-1)x+4在区间[1,5]内的最小值为2,求m的值

导数的定义 导数的几何意义 多项式函数的导数 求导公式与法则 导数 函数单调性 函数的极值 导数的应用 函数的最值

基本练习 1、曲线y=x4-2x3+3x在点P(-1,0)处的切线的斜率为( ) (A) –5 (B) –6 (C) –7 (D) –8 2、函数y=x100+2x50+4x25的导数为( ) y’=100(x99+x49+x24) (B) y’=100x99 (C) y’=100x99+50x49+25x24 (D) y’=100x99+2x49

3、已知过曲线y=x3/3上点P的切线方程为12x-3y=16,则点P的坐标为 . 4、函数f(x)=x3-3x+1的减区间为( ) (A) (-1,1) (B) (1,2) (C) (-∞,-1) (D) (-∞,-1) ,(1, +∞) 5、若函数y=a(x3-x)的递减区间为( ),则a的取值范围为( ) (A) a>0 (B) –1<a<1 (C) a>1 (D) 0<a<1

6、当x∈(-2,1)时,f(x)=2x3+3x2-12x+1是( ) 单调递增函数 (B) 单调递减函数 (C) 部份单调增,部分单调减 (D) 单调性不能确定 7、 如果质点M的运动规律为S=2t2-1,则在一小段时间[2,2+Δt]中相应的平均速度等于( ) (A) 8+2Δt (B) 4+2Δt (C) 7+2Δt (D) –8+2Δt

8、如果质点A按规律S=2t3运动,则在t=3秒时的瞬时速度为( ) (A) 6 (B) 18 (C) 54 (D) 81 9、 已知y=f(x)=2x3-3x2+a的极大值为6,那么a等于( ) (A) 6 (B) 0 (C) 5 (D) 1 10、函数y=x3-3x的极大值为( ) (A) 0 (B) 2 (C) +3 (D) 1

例1、 若两曲线y=3x2+ax与y=x2-ax+1在点x=1处的切线互相平行,求a的值. 即:6+a=2-a

例2 、 已知抛物线y=ax2+bx+c通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a、b、c的值. 分析 由条件知: y=ax2+bx+c在点Q(2,-1)处的导数为1,于是 4a+b=1 又点P(1,1)、Q(2,-1)在曲线y=ax2+bx+c上,从而 a+b+c=1且4a+2b+c=-1

例3 已知P为抛物线y=x2上任意一点,则当点P到直线x+y+2=0的距离最小时,求点P到抛物线准线的距离 分析 点P到直线的距离最小时,抛物线在点P处的切线斜率为-1,即函数在点P处的导数为-1,令P(a,b),于是有:2a= -1.

例4 设f(x)=ax3+x恰有三个单调区间,试确定实数a的取值范围,并求出这三个单调区间. 思考、 已知函数y=x2-2(m-1)x+2在区间[2,6]内单调递增,求m的取值范围。

(1)若曲线y=x3在点P处的切线的斜率等于3,则点P的坐标为( ) (2,8) (B) (-2,-8) (C) (-1,-1)或(1,1) (D) (-1/2,-1/8) (2)若曲线y=x5/5上一点M处的切线与直线y=3-x垂直,则此切线方程为( ) 5x+5y-4=0 (B) 5x-5y-4=0 (C) 5x-5y+4=0 (D)以上皆非 (3)曲线y=x3/3-x2+5在点A处的切线的倾角为3π/4,则A的坐标为     .