第六模块 无穷级数 第五节 函数的幂级数展开 一、 麦克劳林 (Maclaurin) 公式 二、 直接展开法 三、 间接展开法.

Slides:



Advertisements
Similar presentations
1 函数的微分 微分的定义 微分的几何意义 基本初等函数 的微分公式与 微分的运算法则 微分在近似计算中的应用 微分的近似计算 误差估计 基本初等函数的微分公式 和、差、积、商的微分法则 复合函数的微分法则.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数. 二、 连续与间断 一、 函数 三、 极限 函数与极限.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
第十二章 第二节 一元函数 y = f (x) 的微分 机动 目录 上页 下页 返回 结束 对二元函数的全增量是否也有类似这样的性质? 全微分.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
§1. 导数的概念 1. 什么是导数(值)?如何表示? 2. 导数的几何意义? 3. 函数可导与连续的关系?(了解) §2. 导数的基本运算法则 反函数的求导法则? §3. 导数的基本公式.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
8.4 幂级数 主要内容: 1. 函数项级数的概念 2.幂级数及其收敛域 3、幂级数的运算性质 4、泰勒级数.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
大 学 数 学(一) —— 一元微积分学 第三十讲 一元微积分的应用(三) —— 函数展开为幂级数 高等院校非数学类本科数学课程
复变函数 第2讲 本文件可从网址 上下载 (单击ppt讲义后选择‘复变函数'子目录)
第四节 函数展开成幂级数 但在许多应用中,遇到的是:给定函数f(x),考虑它是否能 在某个区间内展开成幂级数,即是能否找到这样一个幂
第四章 解析函数 的级数展开.
第二节 常数项级数的审敛法 一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 第十二章
《高等数学》(理学) 常数项级数的概念 袁安锋
数学分析 江西财经大学 统计学院 2012级 密码: sxfx2012
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
CH 4 级数 1、复数项级数 2、幂级数 3、泰勒(Taylor)级数 4、罗朗(Laurent)级数.
复变函数 第11讲 本文件可从网址 上下载.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
问题1 设 问.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
§1 幂 级 数 一、幂级数的收敛区间 二、幂级数的性质
项目四 无穷级数 学习任务一:  数项级数的概念和性质 一、数项级数及其收敛性 二、数项级数的基本性质 三、数项级数收敛的必要条件.
第十一章 无穷级数 返回.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
§3 泰勒公式 多项式函数是最简单的函数.用多项 式来逼近一般的函数是近似计算的重 要内容,也是数学的研究课题之一.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
第九章 数项级数 §9.1 级数的收敛性 §9.2 正项级数 §9.3 一般项级数.
实验一 计算复变函数极限、微分、积分、 留数、泰勒级数展开式 (一) 实验类型:验证性 (二) 实验类别:基础实验
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
(The representation of power series of analytic function)
第二节 第十二章 常数项级数的审敛法 一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 *四、绝对收敛级数的性质.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三节 泰勒公式 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析 目的-用多项式近似表示函数.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
9.5 函数的幂级数展开式 通过上节的学习知道:任何一个幂级数在其收敛区间 内,均可表示成一个函数(即和函数).但在实际中为了便于
Presentation transcript:

第六模块 无穷级数 第五节 函数的幂级数展开 一、 麦克劳林 (Maclaurin) 公式 二、 直接展开法 三、 间接展开法

一、 麦克劳林(Maclaurin)公式 泰勒 (Taylor) 公式 如果函数 f(x) 在 x = x0 则在这个领域内有如下公式 : ①

其中 称为拉格朗日型余项 . ① 式称为泰勒公式 . 就得到 ②

②式称为麦克劳林公式 . 幂级数 ③ 那么它是否以函数 f(x) 为和函数呢 ? 我们称之为麦克劳林级数 .

若令麦克劳林级数 ③ 的前n + 1 项和为 即 那么, 级数 ③ 收敛于函数 f(x) 的条件为

注意到麦克劳林公式 ② 与麦克劳林级数 ③ 的关系, 可知 于是,当 时,有 反之,若 必有

这表明,麦克劳林级数 ③ 以 f(x) 为和函数的充要条件, ② 这样,我们就得到了函数 f(x) 的幂级数展开式 : ④

也表示了函数的 幂级数展开式是唯一的 . 它就是函数 f(x) 的幂级数表达式 . 幂级数 : 称为泰勒级数 .

二、 直接展开法 利用麦克劳林公式将函数 f(x) 展开成幂级数 的方法,称为直接展开法 . 例 1 试将函数 f(x) = ex 展开成 x 的幂级数. 解 可以 得到

因此我们可以得到幂级数 ⑥ 显然,这个幂级数的收敛区间为 (,+ ) . ⑥ 因为

≤ 注意到,对任一确定的 x 值, 因此其一般项当 n 时, 而级数 ⑥ 是绝对收敛的, 所以,当 n 时,

由此可知 , e ) ( x f = 确实收敛于 这表明级数 ⑥ 因此有

例 2 试将 解 于是可以得到幂级数

且它的收敛区间为 因为所给函数的麦克劳林公式的余项为 所以可以推知

≤ 因此得到

三、 间接展开法 例 3 试求函数 解 而 所以根据幂级数可逐项求导的法则, 可得

例 4 将函数 展开成 x 的幂级数 . 解 注意到 而函数 的展开式由本章第四节例 1 可知 将上式两边同时积分

所以,上式 右端级数的收敛半径仍为 R = 1; 因为幂级数逐项积分后收敛半径不变, 而当 x = 1 时该级 数发散, 故收敛域为 1 < x ≤ 1 . 当 x = 1 时,该级数收敛 .

例 6 试将函数 x 的幂级数 . 展开成 解 因为

且 所以

根据幂级数和的运算法则,其收敛半径应取较小的一个, 因此所得幂级数的收敛区间为 1 < x < 1 . 故 R = 1,

例 7 将函数 代入得 解 令 x  1 = y , 则 x = y + 1, 因 所以 收敛区间为 (0 , 2) .

例 8 试将函数 解 则原题就转化成 将函数 于是有

最后,我们将几个常用函数的幂级数展开式列在下面,   最后,我们将几个常用函数的幂级数展开式列在下面, 以便于读者查用 . ≤

其端点的收敛 性与 m 有关. 最后一个式子称为二项展开式, 收敛区间为 [1 , 1], 例如当 m > 0 时, 当 1 < m < 0 时,收敛区间为(1 , 1] .