第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.

Slides:



Advertisements
Similar presentations
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
Advertisements

目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第二章 函数微分学 §2.3 函数的微分 本节内容 一.微分的定义 二.微分的几何意义 三.微分公式与运算法则.
换元积分法 一、第一类换元积分法 二、第二类换元积分法 一、第一类换元法 例1例1 原因在于被积函数 cos 2x 与公式 中的被 积函数不一样. 如果令 u=2x ,则 cos2x=cos u , d u=2dx , 从而 所以有 ? 分析.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第八章 不定积分 第一节 不定积分概念与基本积分公式 第二节 换元积分法与分部积分法 第三节 有理函数和可化为有理函数的不定积分.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
高等数学教学课件 分部积分法 湄洲湾职业技术学院 傅仙发. 换元积分法是一种重要的积分法,可以求许多函数 的积分。但还有一些积分无法计算,如 等,像以上这样的积分都不能利用基本积分表和换元积 分法计算。本节将从函数乘积的微分公式出发,导出另 一种基本积分法 —— 分部积分法 。 回忆:函数乘积的微分运算法则?
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
第五章 一元函数积分学 第一节 不定积分的概念与性质 第一节 不定积分的概念与性质 第二节 不定积分法 第二节 不定积分法 第三节 定积分的概念与性质 第三节 定积分的概念与性质 第四节 牛顿 - 莱布尼兹公式 第四节 牛顿 - 莱布尼兹公式 第五节 定积分的换元法与分部积分法 第五节 定积分的换元法与分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第五节 积分表的使用 一、关于积分表的说明 二、例题 结束. ( 1 )常用积分公式汇集成的表称为积分表. ( 2 )积分表是按照被积函数的类型来排列的. ( 4 )积分表见《高等数学》(四版)上册 (同济大学数学教研室主编)第 452 页. ( 3 )求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.
第六章 Fourier变换法.
数学补充 附录1-微积分运算.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
8.2.1 换元积分法.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第一节 定积分的概念与性质 一、引入定积分概念的实例 二、定积分的概念 三、定积分的几何意义 四、定积分的性质.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第六章 微分与不定积分 第三节 不定积分.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
3.8 复合函数的导数 [法则4] 如果函数y=f(u)对u可导,函数u=g(x)对x可导,
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
习 题 课.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
计算机数学基础 主讲老师: 邓辉文.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
第七章 定积分 §7.1 定积分的概念 §7.2 定积分的基本性质 §7.3 定积分计算基本公式 §7.4 定积分基本积分方法
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法

一、定积分的换元积分法 定理 若函数 f (x) 在区间 [a, b] 上连续. 函数 x = j(t) 在区间 [a, b ]上单调且有连续导数 j(t), x = j(t) 的值在[a, b]上变化, 当 t 在[a, b](或[b, a])上变化时, 且 j(a) = a,j(b) = b(或j(a) = b,j (b ) = a ) 则

证 因为 f (x) 在区间[a, b]上连续, 所以它可积. 则由牛顿 - 莱布尼茨公式得 设 F (x) 是 f (x) 的一个原函数, 由不定积分换元法得知 于是

例 2 计算 解 用定积分换元法. 于是 则 x = t2 , dx = 2tdt,

例 3 计算 解 则 x = ln(t2 - 1) , x t ln3 ln8 2 3 于是

例 4 设函数 f (x) 在对称区间[- a, a]上连续, 求证: (1) 则 (2) 当 f (x) 为偶函数时, 则 (3) 当 f (x) 为奇函数时, 证 (1) 根据定积分性质 3, 得 ①

对①式右端第一个积分用换元积分法, -a 0 a 0 , 令 x = - t, 则 dx = - dt, 于是 ② 把 ② 式代入 ① 式中,得

(2) 因为 f (x) 是偶函数,即 f (- x) = f (x), 得 (3) 因为 f (x) 是奇函数,即 f (- x) = - f (x), 得

例 5 计算 且积分区间对称于原点, 解 易知 因此

例 6 计算 且积分区间对称于原点, 解 因为被积函数 得 0 1 , 令 x = 2sint, 则 dx = 2cos tdt , 于是 例 6 计算 且积分区间对称于原点, 解 因为被积函数 得 x t 0 1 , 令 x = 2sint, 则 dx = 2cos tdt , 于是

例 7 证明 证 根据三角函数关系 x t , 则 dx = - dt , 于是

特别地,当 f (sinx) = sinnx 时,

二、定积分的分部积分法 设函数 u = u(x), v = v(x) 在区间 [a, b] 上具有连续导数, 由不定积分的分部积分法, 得 则 即

例 8 计算 解 根据定积分的分部积分公式得

例 9 计算 解 根据定积分的分部积分公式得

例 10 计算 解 先用换元法,然后再用分部积分法. , 令 arcsinx = t, x = sin t, 则 dx = cos tdt, 例 10 计算 解 先用换元法,然后再用分部积分法. x t 0 1 , 令 arcsinx = t, x = sin t, 则 dx = cos tdt, 于是有

例 11 计算 解 用定积分的分部积分法.

把上式看作以 In 为未知量的方程, 解之,得 即 称它为递推公式. 当 n 为偶数时,有

代入上式中,得 当 n 为奇数时,有 代入上式,得

例 12 计算 x t 0 1 , 解 令 x = sin t, 则 dx = cos tdt, 于是有