§3 几 何 应 用 一、平面曲线的切线与法线 二、空间曲线的切线与法平面 三、曲面的切平面与法线 在本节中所讨论的曲线和曲面, 由于它们

Slides:



Advertisements
Similar presentations
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
Advertisements

目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
第八章 习题课 多元函数微分学. 一 基本要求 1 理解二元函数的概念,会求定义域。 2 了解二元函数的极限和连续的概念。 3 理解偏导数的概念,掌握偏导数及高阶偏导 数的求法。 4 掌握多元复合函数的微分法。 5 了解全微分形式的不变性。 6 掌握隐函数的求导法。
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第六节 曲面与空间曲线 一、曲面及其方程 二、 柱 面 三、 旋转曲面 四、 二次曲面 五、 空间曲线的方程.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第七章 空间解析几何 §5 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两空间直线的夹角
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
§3平面曲线的弧长与曲率.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
多元函数微分学学习辅导 一、内容提要 二、典型例题 首页 上页 返回 下页 结束.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
全 微 分 欧阳顺湘 北京师范大学珠海分校
2-7、函数的微分 教学要求 教学要点.
高等数学 高等数学精品课程小组 成都理工大学工程技术学院.
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
高等数学 西华大学应用数学系朱雯.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
1、可微的几何意义 2、复合函数微分法 主讲人:汪凤贞.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
3.1.3 导数的几何意义.
3.1.3 导数的几何意义.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
直线和圆的位置关系 ·.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
空间平面与平面的 位置关系.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
高中数学必修 平面向量的基本定理.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
第一模块 向量代数与空间解析几何 第六节 二次曲面与空间曲线 一、曲面方程的概念 二、常见的二次曲面及其方程 三、空间曲线的方程
Presentation transcript:

§3 几 何 应 用 一、平面曲线的切线与法线 二、空间曲线的切线与法平面 三、曲面的切平面与法线 在本节中所讨论的曲线和曲面, 由于它们 §3 几 何 应 用 在本节中所讨论的曲线和曲面, 由于它们 的方程是以隐函数(组)的形式出现的, 因此 在求它们的切线或切平面时, 都要用到隐函 数(组)的微分法. 一、平面曲线的切线与法线 二、空间曲线的切线与法平面 三、曲面的切平面与法线 *四、用参数方程表示的曲面 返回

一、平面曲线的切线与法线 曲线 L : 条件: 上一点, 近旁, F 满足 隐函数定理条件, 可确定可微的隐函数: 处的切线:

总之, 当 例1 求笛卡儿叶形线 在点 处的切线与法线. 解 设 由§1 例 2 的讨 论 近旁满足隐函数定理

的条件. 容易算出 于是所求的切线与法线分别为 例2 用数学软件画出曲线 的图象;并求该曲线在点 处的 切线与法线.

解 在 MATLAB 指令窗内执行如下绘图指令: syms x,y; ezplot(x^2+y-sin(x*y),[-4,4],[-8,1]); 就立即得到曲线 L 的图象 (见本例末页图18-6). 令 容易求出:

若在上面的 MATLAB 指令窗里继续输入如下指 令, 便可画出上述切线与法线的图象. hold on; a=(pi)^(1/3); b=a^2; ezplot((2*a-b)*(x-a)+(1+a)*(y+b)); ezplot((1+a)*(x-a)-(2*a-b)*(y+b))

图 18-6

例3 设一般二次曲线为 试证 L 在点 处的切线方程为 证

由此得到所求切线为 利用 满足曲线 L 的方程, 即 整理后便得到

二、空间曲线的切线与法平面 先从参数方程表示的曲线开始讨论. 在第五章§3 已学过, 对于平面曲线 若 是其上一点, 则曲线 在第五章§3 已学过, 对于平面曲线 若 是其上一点, 则曲线 在点 处的切线为 下面讨论空间曲线.

(A) 用参数方程表示的空间曲线: 类似于平面曲线的情形, 不难求得 处的切线为 过点 且垂直于切线 的平面 , 称为曲线 L 在点 处的法平面 (见图18-7).

因为切线 的方向向量即为 法平面 的法向量, 所以法 平面的方程为 (B) 用直角坐标方程表示的空间曲线: 设 近旁具有连续的 因为切线 的方向向量即为 图 18-7 法平面 的法向量, 所以法 平面的方程为 (B) 用直角坐标方程表示的空间曲线: 设 近旁具有连续的 一阶偏导数, 且

不妨设 于是存在隐函数组 这也就是曲线 L 以 z 作为参数的一个参数方程. 根据公式 (2), 所求切线方程为

应用隐函数组求导公式, 有 于是最后求得切线方程为 相应于 (3) 式的法平面方程则为

例 4 求空间曲线 在点 处的切线和法平面. 解 容易求得 故切向向量为 由此得到切线方程和法平面方程分别为

绘制上述空间曲线的程序与所得图形如下: syms t; x=t-sin(t); y=1-cos(t); z=4*sin(t/2); ezplot3(x,y,z,[-2*pi,2*pi])

图 18-8

例5 求曲线 在点 处的切线与法平面. 解 曲线 L 是一球面与一圆锥面的交线. 令 根据公式 (5) 与 (6), 需先求出切向向量. 为此计算 F, G 在点 处的雅可比矩阵:

由此得到所需的雅可比行列式:

故切向向量为 据此求得

三、曲面的切平面与法线 以前知道, 当 f 为可微函数时, 曲面 z = f ( x , y ) 在点 处的切平面为 在点 处的切平面为 现在的新问题是: 曲面 由方程 给出. 若点 近旁 具有连续的一阶偏导数, 而且

不妨设 则由方程 (7) 在点 近旁惟一 地确定了连续可微的隐函数 因为 所以 在 处的切平面为 又因 (8) 式中非零元素的不指定性, 故切平面方程

一般应写成 随之又得到所求的法线方程为 回顾 1 现在知道, 函数 在点 P 的梯度 其实就是等值面 在点 P 的法向量:

回顾 2 若把由 (4) 表示的空间曲线 L 看作两曲面 在 的切线与此二曲 图 18-9 面在 的法线都相垂 直. 而这两条法线的 方向向量分别是

故曲线 (4) 的切向向量可取 的向量积: 这比前面导出 (5) , (6) 两式的过程更为直观, 也容 易记得住.

例6 求旋转抛物面 在点 处的切平面和法线. 解 令 则曲面的法向量为 从而由 (9), (10) 分别得到切平面为 法线为

( ) 例7 证明: 曲面 的任一切平 面都过某个定点 ( 这里 f 是连续可微函数 ) . ( ) 证 令 则有

于是曲面在其上任一点 处的法向量 可取为 ( ) 由此得到切平面方程: 将点 代入上式, 得一恒等式:

这说明点 恒在任一切平面上.

四、用参数方程表示的曲面 曲面也可以用如下双参数方程来表示: 这种曲面可看作由一族曲线所构成: 每给定 v 的一 个值, (11) 就表示一条以 u 为参数的曲线; 当 v 取 某个区间上的一切值时, 这许多曲线的集合构成了 一个曲面. 现在要来求出这种曲面的切平面和法线 的方程. 为此假设 且

(11) 式中三个函数在 近旁都存在连续的一阶偏 (11) 式中三个函数在 近旁都存在连续的一阶偏 导数. 因为 在 处的法线必垂直于 上过 的 任意两条曲线在 的切线, 图 18-10 所以只需在 上取两条特 殊的曲线 ( 见图18-10 ) : 它们的切向量分别为

则所求的法向量为 至此, 不难写出切平面方程和法线方程分别为

例8 设曲面的参数方程为 试对此曲面的切平面作出讨论. 解 先计算在点 处的法向 量:

由此看到, 当 时 说明在曲面 (12) 上存在着一条曲线, 其方程为 在此曲线上各点处, 曲面不存在切平面, 我们称这 种曲线为该曲面上的一条奇线. 而当 时, 法向量可取 与之对应的切平面则为

法线则为 当动点 趋于奇线 (13) 上 的点 时, 法向量 存在极限(一般不一定存在):

此时切平面存在极限位置: 有时需要用此“极限切平面”来补充定义奇线上的 切平面 . 注 曲面上的孤立奇点往往是曲面的尖点, 如圆锥 面 的顶点 在 此点处 不存在法 线和切平面. 而曲面上的奇线, 则往往是该曲面的 “摺线” 、“边界线” 或是曲面自身的 “交叉线”.

曲面 (12) 及其奇线 (边界线) 的图象如下: 图 18-11

定义 若 存在连续的一阶偏导数, 且满足 则称曲面 为 一光滑曲面. 对于用双参数方程 (11) 表示的曲面, 应如何定义 它为光滑曲面? 请读者自行考虑.

复习思考题 1. 模仿例2、例4, 使用数学软件(例如 MATLAB) 分别绘出例1 中的曲线和例8 中的曲面. 自几何对象的计算公式也不同. 试考虑怎样才能较 2. 曲线或曲面由于它们表示形式的不同, 导致各 容易地记住这许多公式? 3. 光滑曲面有怎样的几何特征? 对于用参数方程 (11) 表示的曲面, 应如何定义它为光滑曲面?

为什么说是一条边界线? 4. 例8 所讨论的曲面上, 对应于 的那条奇线