积 分 的 应 用 不定积分的应用 定积分的应用 第四章 微分方程 不定积分的应用 第 一 节第 一 节 学习重点 微分方程的概念 一阶微分方程的求解.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
第 14 章 常微分方程的 MATLAB 求 解 编者. Outline 14.1 微分方程的基本概念 14.2 几种常用微分方程类型 14.3 高阶线性微分方程 14.4 一阶微分方程初值问题的数值解 14.5 一阶微分方程组和高阶微分方程的数值解 14.6 边值问题的数值解.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
第三节 二阶线形微分方程 二阶线形齐次微分方程4.3.1 二阶线形齐次微分方程 二阶线形非齐次微分方程4.3.2 二阶线形非齐次微分方程.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
4.3 一阶线性微分方程 一、案例 二、概念和公式的引出 三、进一步的练习 四、实训. 一、案例 [ 溶液的混合 ] 一容器内盛有 50L 的盐水溶液,其中含有 10g 的盐.现将每升含盐 2g 的溶液以每分钟 5L 的速度注 入容器,并不断进行搅拌,使混合液迅速达到均匀, 同时混合液以 3L/min.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
一、可分离变量的微分方程 可分离变量的微分方程. 解法 为微分方程的解. 分离变量法 §2 一阶常微分方程.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
经济数学 第四章 不定积分. 4.1 不定积分的概念与性质 4.2 不定积分的性质 4.3 不定积分的换元积分法 4.4 不定积分的分部积分法.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
1.非线性振动和线性振动的根本区别 §4-2 一维非线性振动及其微分方程的近似解法 方程
代数方程总复习 五十四中学 苗 伟.
5.3 二阶微分方程 主要内容 1.可降阶的二阶微分方程 2.二阶常系数线性微分方程.
背 景 1676年,贝努利(Bernoulli)致牛顿的信中第一次提出微分方程,直到十八世纪中期,微分方程才成为一门独立的学科.微分方程建立后,立即成为探索现实世界的重要工具.
第七节 第七章 常系数 齐次线性微分方程 基本思路: 求解常系数线性齐次微分方程 转化 求特征方程(代数方程)之根.
第六章 微分方程 — 积分问题 推广 — 微分方程问题.
复习 齐次方程 齐次方程的解法 化为可分离变量的方程然后求解. 可化为齐次方程的方程 其它情况, 令 化为齐次方程;
第十二章 微分方程 — 积分问题 推广 — 微分方程问题.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或. 一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第一章 函数与极限.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第三十五讲 二阶常系数线性微分方程.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第九章 微分方程与差分方程简介 §9.1 微分方程的基本概念 §9.2 一阶微分方程 §9.3 高阶常系数线性微分方程
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
高等数学 西华大学应用数学系朱雯.
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
Partial Differential Equations §2 Separation of variables
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
5.2.1 变量可分离的微分方程 形如 的微分方程成为变量可 分离的微分方程. 解法 分离变量法 5.2 一阶微分方程(80)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
一元一次方程的解法(-).
Presentation transcript:

积 分 的 应 用 不定积分的应用 定积分的应用 第四章

微分方程

不定积分的应用 第 一 节第 一 节 学习重点 微分方程的概念 一阶微分方程的求解

微分方程:含有未知函数的导数或微分的方程。如: 等 …… 特点: 和 可以不出现,但 的导数一定要出现。 微分方程的阶:微分方程中出现的未知函数的导数的最高阶数。 上面三个微分方程的阶数分别是二阶、一阶、三阶。 微分方程的解:满足微分方程的函数。 特解:满足微分方程且不含任意常数的函数。 通解:满足 阶微分方程且含 个独立任意常数的函数。 微分方程的概念 微分方程的概念 课堂练习 P175 1 及 2 题

例:对微分方程: 即: 是它的解,且是通解。 若给定条件: 则可得特解: 也是一特解,但不含于通解中,特别地称为奇解。 称为初始条件。 微分方程的概念 微分方程的概念 又如:对于微分方程 容易验证 都是微分方程的解。 通解或特解?特解 通解 既非特解也非通解

是的解。 即是 验证下列所给函数是所给微分方程的解: 例 1. 验证下列所给函数是所给微分方程的解: 解 解 因为 所以

一. 可分离变量的微分方程 求解方法:两边同时积分 理由:设是该微分方程的解,则 一阶微分方程 一阶微分方程

求解方法:两边积分 特例:情形,即 一. 可分离变量的微分方程 一阶微分方程 一阶微分方程 两边积分,得 因此,形如 的微分方程的求解方法是: 两边直接积分,得解为

解 原方程可变形为(分离变量) 求下列微分方程的通解或特解: 例 2. 求下列微分方程的通解或特解: 两边积分,得 所以,原方程的通解为 (隐函数形式)

解 原方程可变形为 (注是一奇解) 求下列微分方程的通解或特解: 例 2. 求下列微分方程的通解或特解: 即 两边积分,得 所以,原方程的通解为

解 原方程可变形为. 求下列微分方程的通解或特解: 例 2. 求下列微分方程的通解或特解: 两边积分得 即 得 所以,原方程的通解为

解 将初始条件代入,得特解:. 求下列微分方程的通解或特解: 例 2. 求下列微分方程的通解或特解: 原方程可变形为 两边积分 (课堂练习)

且线段 PQ 被 Y 轴平分,曲线过点 求该曲线方程。 解:由题设及导数的几何意义,得微分方程: 由曲线过点 得所求曲线方程: (这是一个多值函数) 或 上任一点 P 处的法线与 X 轴有交点 Q ,. 设曲线 例 3. 设曲线

若,则称( 1 )为齐次的。 若,则称( 1 )为非齐次的。 可将其改写成 对一阶线性齐次微分方程 这是一个可分离变量的微分方程。 这是( 2 )的通解。 (这里表示某一确定的原函数,不带任意常数。) 二. 一阶线性微分方程 一阶微分方程 一阶微分方程

( 2 )的通解是: 猜想( 1 )的解是: 则 将 代入( 1 ),得 即 这种方法称作 常数变易法 。 比较方程( 1 )、( 2 ): 故( 1 )的通解是:

比较方程( 1 )、( 2 ): ( 2 )的通解是: ( 1 )的通解是: 非齐次线性微分方程的通解 = 非齐次的特解 + 对应齐次的通解 —— 线性微分方程解的结构,称为叠加原理。

解 这是一个一阶线性微分方程,方程的通解为 例 4 求解下列微分方程 通解公式 (1)(1)

解 原方程的通解为 例 4 ( 2 ) 凑微分

解:将原方程化为 例4例4 则方程的通解为 (课堂练习)

解:将原方程化为 例 4. 变通公式 原方程的通解为

解:原方程可化为 例 4 ( 5 ) 公式的变通:如果微分方程为 则方程的通解为 (课堂练习)

型 可降解的高阶微分方程 可降解的高阶微分方程 求解方法:连续积分 n 次。 例 5 ( 1 )求解微分方程 解 由原方程积分得: 再积分得 所以,原方程的通解为

过点例 5 ( 2 )设曲线满足,且在此点与 直线 相切,试求该曲线的方程。 解 由题设可知: 可得 即: 再由: 得 故所求曲线方程为 由原方程积分得 因为

解:令则原方程变为 即: 的通解。 例 5 ( 3 )求微分方程

再 见!