2.3 函数的微分. 四川财经职业学院 课前复习 1. 2. 高阶导数的定义和计算方法。 作业解析:

Slides:



Advertisements
Similar presentations
第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
Advertisements

高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
1 函数的微分 微分的定义 微分的几何意义 基本初等函数 的微分公式与 微分的运算法则 微分在近似计算中的应用 微分的近似计算 误差估计 基本初等函数的微分公式 和、差、积、商的微分法则 复合函数的微分法则.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
1 主要内容 : 1. 微分的概念. 2. 微分的几何意义. 3. 微分的运算 4. 微分在近似计算中的应用 2.5 微分.
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
1 大学数学教研室 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
1 第二节 微 分 § 微分概念 § 微分公式和运算法则 § 高阶微分 § 微分在近似计算中的应用举例 误差估计.
第三章 导数与微分 第二节 求导法则 第三节 微分及其在近似计算中的应用 微分及其在近似计算中的应用 第一节 导数的概念.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
第十二章 第二节 一元函数 y = f (x) 的微分 机动 目录 上页 下页 返回 结束 对二元函数的全增量是否也有类似这样的性质? 全微分.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
高等数学 B ( 1 ) 微分概念及计算. 高等数学 B ( 1 ) 一、微分的概念 在许多实际问题中,我们不仅要知道由自变量 引起的函数变化的快慢程度问题,而且还要了解 函数在某一点当自变量取一个微小改变 量 △ x 时,函数取的相应的改变量 △ y 的大小, 计算△ y 的精确值一般比较繁。先看下面的问题.
§5 微分. 一 问题的提出 1 面积问题 设有一边长为 的正方形 2 自由落体问题 二 微分的定义 1 定义.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
§1. 导数的概念 1. 什么是导数(值)?如何表示? 2. 导数的几何意义? 3. 函数可导与连续的关系?(了解) §2. 导数的基本运算法则 反函数的求导法则? §3. 导数的基本公式.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
3.8 复合函数的导数 [法则4] 如果函数y=f(u)对u可导,函数u=g(x)对x可导,
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第五章 导数和微分 §1 导数的概念 §2 求导法则 §3 参变量函数的导数 §4 高阶导数 §5 微分.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
第一章 导数与微分 1.1 函数及其性质 1.2 极限 1.3 极限的性质与运算法则 1.4 两个重要极限 1.5 函数的连续性
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 第一节 导数的概念 第二节 求导法则 第三节 微分及其在近似计算中的应用.
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
导数的基本运算.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
Math2-4 内容预告 授 课 内 容 取对数求导法 导数基本公式 高阶导数 同学们好 现在开始上课 Math2-4.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
高中数学选修 导数的计算.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
1.4.1正弦函数、余弦函数的图象.
Presentation transcript:

2.3 函数的微分

四川财经职业学院 课前复习 高阶导数的定义和计算方法。

作业解析:

习题 2.2 : 8. 求下列函数的二阶导数:

2.3.1 微分的定义

注:

由此可得: 同样可以证:

定理 2.5

因此,函数在某点处可导也一定可微, 同时可微也一定可导. 求导数和求微分的方法统称为 微分法.

2.3.2 微分的基本公式与四则运算法则

1. 微分基本公式

2 . 微分的四则运算法则 设 u=u(x) , v=v(x) 均可微 ,则

解:

解: (法一) 因为

解: (法二)

解:

1 .【习题 2.3 】填空题: 课堂练习

3.求下列各函数的微分 (1)-(6)

1. 微分的定义 课后小结

2. 微分的基本形式 3. 微分和导数的关系: 可导必可微,可微必可导。

4. 微分基本公式

5 . 微分的四则运算法则 设 u=u(x) , v=v(x) 均可微 ,则

习题 2.3 : 3.(7)-(10) 作业:

作业评讲 习题 2.3 : 3.(7)-(10)