Anhui University of Finance& Economics

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数. 二、 连续与间断 一、 函数 三、 极限 函数与极限.
第八章 习题课 多元函数微分学. 一 基本要求 1 理解二元函数的概念,会求定义域。 2 了解二元函数的极限和连续的概念。 3 理解偏导数的概念,掌握偏导数及高阶偏导 数的求法。 4 掌握多元复合函数的微分法。 5 了解全微分形式的不变性。 6 掌握隐函数的求导法。
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
空间直角坐标系 欧阳顺湘 北京师范大学珠海分校.
第七章 多元微分学 空间曲面与曲线 多元函数的基本概念 偏微商与全微分 多元复合函数及隐函数求导法则 多元函数的极值和最优化问题.
第四章 多元函数微分学 一元函数微分学 推广 多元函数微分学 注意: 善于类比, 区别异同 一元函数、极限与连续 一元函数的导数
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 多元函数 §8.1空间解析几何简介 §8.2多元函数的概念 §8.3二元函数的极限与连续
经济数学 第六章 多元函数微分学.
第一节 多元函数 空间直角坐标系 多元函数的概念 二元函数的极限 二元函数的连续 小结与思考题.
空间直角坐标系 这一章,我们为学习多元函数微积分学作准备,介绍空间解析几何和向量代数。这是两部分相互关联的内容。用代数的方法研究空间图形就是空间解析几何,它是平面解析几何的推广。向量代数则是研究空间解析几何的有力工具。这部分内容在自然科学和工程技术领域中有着十分广泛的应用,同时也是一种很重要的数学工具。
财政学 Shanghai University of Finance & Economics 第二十章 财产税与土地批租 公共经济与管理学院.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
财政学 Shanghai University of Finance & Economics 第二十一章 收费与价格 公共经济与管理学院.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
多元函数微分学学习辅导 一、内容提要 二、典型例题 首页 上页 返回 下页 结束.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
第一章 导数与微分 1.1 函数及其性质 1.2 极限 1.3 极限的性质与运算法则 1.4 两个重要极限 1.5 函数的连续性
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 第一节 导数的概念 第二节 求导法则 第三节 微分及其在近似计算中的应用.
中国科技论文在线.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
第十一章 无穷级数 返回.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第一章 函数与极限.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
作业 P158 习题 2 1(2)(4) (5). 2(1). 预习 P156— /5/2.
第三单元 第2课 实验 一元函数的积分 实验目的:掌握matlab求解有关不定积分和定积分的问题,深入理解定积分的概念和几何意义。
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第七章 多元函数微积分 第一节 空间解析几何简介 第二节 多元函数的基本概念 第三节 偏导数和全微分 第四节 多元复合函数求导法则
二重积分的换元 主讲人:汪凤贞.
第六模块 无穷级数 第五节 函数的幂级数展开 一、 麦克劳林 (Maclaurin) 公式 二、 直接展开法 三、 间接展开法.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

Anhui University of Finance& Economics 安徽财经大学 Anhui University of Finance& Economics 1959

一、背景知识 多元函数微积分是微积分学的一个组成部分。它是体现在一元函数的微分学和积分学中的基本概念和计算方法在应用到多元函数的情形的发展。在这发展中,基本概念都被推广到多元的情形,而计算方法则被化归到一元的情形。从而计算仍旧在实数范围内进行。这样多元微积分学的基本任务便在于:①以一元微积分学为基础,来阐述其中基本概念和计算的规律对于任意多个变量的函数仍旧一致有效,②同时分析由于变量个数的增多而带来的特点。 把一元函数的研究扩展到多元函数u=f(x1,x2, …, xn)的两个基本任务,都是在n=2的情形中便已表现出了它们的一般性;所以主要就二元函数 u=f(x,y) 进行讲述,仅在进一步展示新的特点有需要时才考虑n>2.

课时分配 二、课时安排 空间解析几何简介 2学时 多元函数的概念 2学时 多元函数的偏导数与全微分 2学时 多元函数的偏导数与全微分 2学时 空间解析几何简介 2学时 1 多元函数的概念 2学时 2 多元函数的偏导数与全微分 2学时 课时分配 3 4 多元函数的偏导数与全微分 2学时 二重积分的概念与性质 2学时 5 二重积分的计算 2学时 6

三、教学重点 1 正项级数的审敛法 2 幂级数的收敛半径和收敛区间 3 函数的幂级数展开

四、基本要求 1、了解空间坐标系的有关概念,会求两点间的距离。了解平面域、域边界、点邻域、开区域与闭区域等。 2、了解多元函数的概念, 掌握二元函数的定义与表示法, 知道二元函数的极限与连续性的概念。 3、理解多元函数偏导数与全微分的概念,熟练掌握偏导数与全微分的求法,掌握复合函数偏导数的求法 4、掌握一个方程确定的隐函数的求偏导数的方法。 5、了解二元函数极值与条件极值的概念,会求二元函数的极值及用拉格朗日乘数法求条件极值,会求一些最值问题。 6、了解二重积分的概念、几何意义与基本性质。掌握直角坐标系与极坐标系下计算二重积分的常用方法,会计算一些简单的二重积分。