定积分习题课.

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
1 、不定积分的概念与性质 2 、不定积分的计算 2.1 第一换元积分法 2.2 分步积分法 3 、定积分的概念与计算 第六章 一元函数积分学.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第五节 积分表的使用 一、关于积分表的说明 二、例题 结束. ( 1 )常用积分公式汇集成的表称为积分表. ( 2 )积分表是按照被积函数的类型来排列的. ( 4 )积分表见《高等数学》(四版)上册 (同济大学数学教研室主编)第 452 页. ( 3 )求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.
窦娥冤 关汉卿 感天动地 元·关汉卿.
专利技术交底书的撰写方法 ——公司知识产权讲座
知其不可而为之.
中国画家协会理事、安徽省美术家协会会员、 工艺美术师、黄山市邮协常务理事余承平主讲
汉字的构造.
诵读欣赏 古代诗词三首.
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第五章 定积分及其应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
8.2.1 换元积分法.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第一节 定积分的概念与性质 一、引入定积分概念的实例 二、定积分的概念 三、定积分的几何意义 四、定积分的性质.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第六章 微分与不定积分 第三节 不定积分.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
成才之路 · 数学 人教A版 · 选修2-2 路漫漫其修远兮 吾将上下而求索.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第3.4节 几乎连续函数与积分 第3.5节 微积分基本定理
第二节 微积分基本公式 一, 引例 前面我们已经研究了定积分的定义,利用定义求定积分很不方便 本讲介绍计前算定积分的方法。
第一章 函数与极限.
第6章 定 积 分 §1定积分概念 §2 牛顿—莱布尼茨公式 §3 可积条件 §4 定积分的性质 §5 微积分学基本定理 §6 定积分的计算
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
第三章 导数与微分 习 题 课 主要内容 典型例题.
贴近教学 服务师生 方便老师.
六年级 语文 下册 第四单元 指尖的世界.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
导数的应用 ——函数的单调性与极值.
第七章 定积分 §7.1 定积分的概念 §7.2 定积分的基本性质 §7.3 定积分计算基本公式 §7.4 定积分基本积分方法
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第4讲 定积分及其应用举例 考纲要求 考纲研读 定积分与微积分基本定理 1.了解定积分的实际背景,了解 定积分的基本思想,了解定积分
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
定积分应用 欧阳顺湘 北京师范大学珠海分校.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
二重积分的换元 主讲人:汪凤贞.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
Presentation transcript:

定积分习题课

一、主要内容 存在定理 可积条件 定积分 定积分 的性质 定积分的 计算法 问题1: 问题2: 牛顿-莱布尼茨公式 曲边梯形的面积 变速直线运动的路程 定积分 存在定理 可积条件 定积分 的性质 定积分的 计算法 牛顿-莱布尼茨公式

1、问题的提出 实例1 (求曲边梯形的面积A)

实例2 (求变速直线运动的路程) 方法:分割、求和、取极限.

2、定积分的定义 定义

记为

3、可积条件 可积的充分条件: 定理1 定理2

Riemann可积的第一充要条件 xi-1 xi f(x)在[a,b]上Riemann可积 其中:

Riemann可积的第二充要条件 其中: xi-1 xi f(x)在[a,b]上Riemann可积

Riemann可积的第三充要条件 f(x)在[a,b]上Riemann可积 xi-1 xi

4、定积分的性质 性质1 性质2 性质3

性质4 性质5 推论: (1) (2)

性质6 性质7 (定积分中值定理) 积分中值公式

5、牛顿—莱布尼茨公式 定理1 定理2(原函数存在定理)

定理 3(微积分基本公式) 也可写成 牛顿—莱布尼茨公式

6、定积分的计算法 (1)换元法 换元公式 (2)分部积分法 分部积分公式

二、典型例题 例1 解

例2 解

例3 解

例4 解

例5 解

例6 解 是偶函数,

例7 解

例8 证

例9 证 作辅助函数