第六章 微分中值定理及其应用.

Slides:



Advertisements
Similar presentations
第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第八节 函数图形的描绘. 一、渐近线 定义 : 1. 铅直渐近线 例如 有铅直渐近线两条 : 2. 水平渐近线 例如 有水平渐近线两条 :
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
Yunnan University Chapt 5. 微分学基本定理及其应用 导 数导 数 函数性质 中值定理 §1. 中值定理 §2. 泰勒公式 §3. 函数的升降、凸性与极值 §4. 平面曲线的曲率 §5. 待定型.
函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数. 二、 连续与间断 一、 函数 三、 极限 函数与极限.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三章 微分中值定理与 导数的应用. 3.1 微分中值定理 3.3 洛必达法则 3.2 泰勒公式 3.4 函数的单调性 3.9 曲率 3.8 函数图形的描绘 3.5 函数的极值 3.7 曲线的凹凸性及拐点 3.6 函数的最值及其应用.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
第二讲:连续、导数、微分 1 函数的连续性 2 导数的概念 3 函数微分 (1) (2) (3)
第八章 互换的运用.
入党基础知识培训.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
第三章 习题课 中值定理及导数的应用 一、 微分中值定理及其应用 二、 导数应用 机动 目录 上页 下页 返回 结束.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
数学分析.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
第3章 微分中值定理与导数的应用 一、内容提要 (一)主要定义
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第三章 导数的应用 第一节 微分中值定理 第二节 洛必达法则 第三节 函数的单调性及其极值 第四节 曲线的凹凸性 函数图形的描绘
全 微 分 欧阳顺湘 北京师范大学珠海分校
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
高等数学 西华大学应用数学系朱雯.
6.4不等式的解法举例(1) 2019年4月17日星期三.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
§2 闭区间上连续函数的性质 实数完备性理论的一个重要作用就是证 明闭区间上连续函数的性质,这些性质曾 经在第四章给出过.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第六章 微分中值定理及其应用

6.1 微分中值定理 一、罗尔(Rolle)定理 二、拉格朗日(Lagrange)中值定理 三、柯西(Cauchy)中值定理

中值定理的演示 T 与 l 平行 这样的x可能有好多 Made by Huilai Li

中值定理的演示 到了 高 低 行走的典型路线如下: 一个特殊的例子:假设从A点运动到B点,那么有许多种走法,首先我们来看一个例子。 了 了 ● ● 低 了 Made by Huilai Li

中值定理的演示 典型情形的证明思想 结论: Rolle定理 这说明:在极大值或极小值点处,函数的导数为0. 几何意义是:在极值点处的切线平行于AB的连线或x轴. 中值定理的演示 典型情形的证明思想 ● ● ● Made by Huilai Li

一、罗尔(Rolle)定理 例如,

几何解释:

注意: 罗尔定理的三个条件是充分的,但不是必要的.若罗尔定理的三个条件中有一个不满足,其结论可能不成立. 例如, 又例如,

例如: (i) y=f (x)= 1 , x = 1 , x[0, 1) 图3-1-2 x y f (x)满足条件(2), (3), 1 f (x)满足条件(2), (3), 但不满足条件(1), 在(0, 1)内,

(ii) f (x)在[-1, 1]上,满足条件(1), (3), 但不满足条件(2), x y 图3-1-3 当 x 时, x y 1 1 图3-1-3 y = |x| 当 x 时, f  (x)= 1. x 时, f  (x)= 1. x=0时, f  (0)不存在.

(iii) y=f (x)=x, x[1, 2], f (x)在[1, 2]上满足条件(1), (2), 但不满足条件(3), 2 1 x y 图3-1-4 y=x 但不满足条件(3), 在(1, 2)内, f  (x)=1.

例1 设函数 f (x) = (x1)(x2)(x3), 它们分别在何区间? 解: f (x)在[1, 2]上连续, 在(1, 2)上可导, 且 f (1)= f (2); 由罗尔定理: 1 , 使 f  (1; 同理, 2, , 使 f  (2; 注意到 f (x)=0为二次方程, 它至多有两个实根, 故 1, 2是 f (x)=0 的全部实根.

例2 证 由介值定理 即为方程的小于1的正实根. 矛盾,

二、拉格朗日(Lagrange)中值定理

中值定理的演示 更广泛情形的证明思想: T 与 l 平行 同一点 Made by Huilai Li

几何解释: 证 分析: 弦AB方程为

注意:拉氏公式精确地表达了函数在一个区间上的增量与函数在这区间内某点处的导数之间的关系. 作辅助函数 拉格朗日中值公式 注意:拉氏公式精确地表达了函数在一个区间上的增量与函数在这区间内某点处的导数之间的关系.

拉格朗日中值公式又称有限增量公式. 微分中值定理 拉格朗日中值定理又称有限增量定理.

推论1 证明 推论2

例3 证

例4 证 由上式得

证明: nbn1(ab) < an bn < nan1(a b) 例5. 设 a>b>0 n>1. 证明: nbn1(ab) < an bn < nan1(a b) 证明: 令 f (x)= x n 显然 f (x) 在 [b, a]上满足拉格朗日定理条件, 有 f (a) f (b)=f ( )(ab) (b< <a) 即 an bn = n n1(a b) 又 0<b< <a ,且 n >1 所以 bn1< n1< an1 nbn1 (a  b)<n n 1 (a  b)< nan1 (a  b) 即 nbn1(ab) < an bn < nan1(a b)

三、柯西(Cauchy)中值定理

几何解释: 证 作辅助函数

例6 证 分析: 结论可变形为

四、小结 1 罗尔定理、拉格朗日中值定理、柯西中值定理中 条件是充分的,但不是必要的. 2 罗尔定理、拉格朗日中值定理及柯西中值定理之间的关系; Rolle 定理 Lagrange 中值定理 Cauchy 中值定理 3 证明函数方程或方程的根的存在性,可以考虑应用罗尔 定理. 4 应用拉格朗日中值定理和柯西中值定理可以证明 一些不等式

思考题 试举例说明拉格朗日中值定理的条件缺一不可.

思考题解答 不满足在闭区间上连续的条件; 且 不满足在开区间内可微的条件; 以上两个都可说明问题.