第6章 不定积分 6.1不定积分的概念与基本积分公式 6.2换元积分法 6.3分部积分法 6.4几类特殊函数的不定积分.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
引 言 第三章 一元函数积分学 积分学分为不定积分与定积分两 部分.不定积分是作为函数导数的 反问题提出的,而定积分是作为微 分的无限求和引进的,两者概念不 相同,但在计算上却有着紧密的内 在联系.
换元积分法 直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法 —— 换元积分法和分部积分法。 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的.
1 、不定积分的概念与性质 2 、不定积分的计算 2.1 第一换元积分法 2.2 分步积分法 3 、定积分的概念与计算 第六章 一元函数积分学.
换元积分法 一、第一类换元积分法 二、第二类换元积分法 一、第一类换元法 例1例1 原因在于被积函数 cos 2x 与公式 中的被 积函数不一样. 如果令 u=2x ,则 cos2x=cos u , d u=2dx , 从而 所以有 ? 分析.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第八章 不定积分 第一节 不定积分概念与基本积分公式 第二节 换元积分法与分部积分法 第三节 有理函数和可化为有理函数的不定积分.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
§3.1 导数引例 一、瞬时速度问题 一物体作直线变速运动,走过的距离 S 与时间 t 的关 系为 极限 存在, 该极限就是物体在.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
经济数学 第四章 不定积分. 4.1 不定积分的概念与性质 4.2 不定积分的性质 4.3 不定积分的换元积分法 4.4 不定积分的分部积分法.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第五节 积分表的使用 一、关于积分表的说明 二、例题 结束. ( 1 )常用积分公式汇集成的表称为积分表. ( 2 )积分表是按照被积函数的类型来排列的. ( 4 )积分表见《高等数学》(四版)上册 (同济大学数学教研室主编)第 452 页. ( 3 )求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
8.2.1 换元积分法.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第一章 函数与极限.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第八章 不定积分.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第四章 不定积分.
习 题 课.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第五章 不定积分 一、不定积分的概念和性质 5.1 原函数与不定积分 通过对求导和微分的学习,我们可以从一个函数
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
第一章 函数与极限.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
3.3.1 有理函数的积分法 1、有理函数 由两个多项式的商表示的函数. 3.3 几类特殊函数的积分法(52)
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第6章 不定积分 6.1不定积分的概念与基本积分公式 6.2换元积分法 6.3分部积分法 6.4几类特殊函数的不定积分

6.1 不定积分的概念和基本积分公式 原函数和不定积分 基本积分公式表 不定积分的线性运算法则

一、原函数与不定积分的概念 定义1: 例

原函数存在定理: 简言之:连续函数一定有原函数. 问题: (1) 原函数是否唯一? (2) 若不唯一它们之间有什么联系? 例 ( 为任意常数)

关于原函数的说明: (1)若 ,则对于任意常数 , (2)若 和 都是 的原函数, 则 ( 为任意常数) 证 ( 为任意常数)

二、不定积分 定义2 函数f(x)的所有原函数称为f(x)的不定积分, 根据定义,如果 F(x) 是 f(x) 的一个原函数,则 其中 C 是任意常数,称为积分常数。

不定积分的相关名称:  ———叫做积分号, f(x) ——叫做被积函数, f(x)dx —叫做被积表达式, x ———叫做积分变量。  ———叫做积分号, f(x) ——叫做被积函数, f(x)dx —叫做被积表达式, x ———叫做积分变量。 积分号 被积函数 被积表达式 任意常数 积分变量

例1. 例2. 例3. 解:

三、不定积分的几何意义 函数f(x)的原函数的图形称为f(x)的积分曲线。 C1 y=x2+C1 -1 O 1 x y 函数f(x)的积分曲线也有无限多条。函数f(x)的不定积分表示f(x)的一簇积分曲线,而f(x)正是积分曲线的斜率。 y=x2 C2 y=x2+C2 C3 y=x2+C3

例4.求过点(1, 3),且其切线斜率为2x的曲线方程。 解:设所求的曲线方程为 yf(x),则 y f (x) 2x, -2 -1 O 1 2 x y yx2+2 所以y=f(x)x2C。 因为所求曲线通过点(1, 3), 故 31C,C2。 于是所求曲线方程为 yx22。 yx2 (1, 3) .

四、 基本积分公式 实例 启示 能否根据求导公式得出积分公式? 结论 既然积分运算和微分运算是互逆的,因此可以根据求导公式得出积分公式.

基本积分表  是常数); 说明: 简写为

例 求积分 解 根据积分公式(2)

例1. 例2. 例3.

例4.

例5.

例6. 例7. 例8. 例9. 例10.

例11. 例12.

例13.某厂生产某种产品,每日生产的产品的总成 成本为1000元,求总成本与日产量的函数关系。 解:因为总成本是总成本变化率y的原函数,所以 已知当 x=0 时,y=1000, 因此有 C =1000,

五 、 不定积分的性质 证 等式成立. (此性质可推广到有限多个函数之和的情况)

例14 求积分 解 说明: 以上几例中的被积函数都需要进行恒等变形,才能使用基本积分表.

解 所求曲线方程为

小结 原函数的概念: 不定积分的概念: 基本积分表(1) 求微分与求积分的互逆关系 不定积分的性质

思考题 符号函数 在 内是否存在原函数?为什么?

思考题解答 不存在. 假设有原函数 故假设错误 所以 在 内不存在原函数. 结论 每一个含有第一类间断点的函数都没有原函数.

6.2 换元积分法

一、第一类换元法 问题 ? 解决方法 利用复合函数,设置中间变量. 过程 令

在一般情况下: 设 则 如果 (可微) 由此可得换元法定理

定理1 第一类换元公式(凑微分法) 说明 使用此公式的关键在于将 化为 观察重点不同,所得结论不同.

例1 求 解(一) 解(二) 解(三)

例2 求 解 一般地

例3 求 解

例4 求 解

例5 求 解

例6 求 解

例7 求 解

例8 求 解

例9 求 原式

例10 求 解

例11 求 解 说明 当被积函数是三角函数相乘时,拆开奇次项去凑微分.

例12 求 解

例13 求 解(一) (使用了三角函数恒等变形)

解(二) 类似地可推出

例14 设 求 . 解 令

例15 求 解

二、第二类换元法 问题 解决方法 改变中间变量的设置方法. 过程 令 (应用“凑微分”即可求出结果)

则有换元公式 定理2 证 设 为 的原函数, 令 则

第二类积分换元公式

例16 求 解 令

例17 求 解 令

例18 求 解 令

说明(1) 以上几例所使用的均为三角代换. 三角代换的目的是化掉根式. 一般规律如下:当被积函数中含有 可令 可令 可令

说明(2) 积分中为了化掉根式除采用三角代换外还可用双曲代换. 也可以化掉根式 例 中, 令

说明(3) 积分中为了化掉根式是否一定采用三角代换(或双曲代换)并不是绝对的,需根据被积函数的情况来定. 例19 求 (三角代换很繁琐) 解 令

例20 求 解 令

说明(4) 当分母的阶较高时, 可采用倒代换 例21 求 令 解

例22 求 (分母的阶较高) 令 解

说明(5) 当被积函数含有两种或两种以上的根式 时,可采用令 (其中 为各根指数的最小公倍数) 例23 求 解 令

基本积分表 

三 课堂小结: ①第一换元积分法则: ②掌握常见的六种凑微分类型

思考题 求积分

思考题解答

分部积分法

复习引入 一.求下列不定积分: 解: (公式法) (凑微分法) (公式法与凑微分法都不能直接运用) 二.函数积的微分法则 d(uv)=udv+vdu 移项得 udv=d(uv)-vdu 对上式两边求不定积分,得:

分部积分法 新课讲授 如果函数uu(x)及vv(x)具有连续导数,则有 分部积分的过程: (uv) uvuv, 对上述等式两边求不定积分,得 这个公式称为分部积分公式。 分部积分的过程:

新课讲授 注: 根据LIATE法,f(x)与g(x)谁排在LIATE这一字母表 前面就选谁为u. 一.分部积分公式: 二. 关键:恰当选取u和确定v. 如何选取u:(LIATE法) L-----对数函数 I-----反三角函数 A-----代数函数 T-----三角函数 E-----指数函数 根据LIATE法,f(x)与g(x)谁排在LIATE这一字母表 前面就选谁为u. 即若选f(x)为u,则g(x)dx=dv。v=∫g(x)dx、或v'=g(x). 注: 使用分部积分公式,若选f(x)=u,则v≠g(x) 而v'=g(x).

例题与练习 例1.求下列不定积分 解: 解: 解: 解:

例题与练习 解: 练习1.求下列不定积分

常用解题技巧 (Ⅰ)多次使用分部积分法则 例2. 解: 练习2.求不定积分

常用解题技巧 (Ⅱ)还原法 例3. 解: 练习3:

常用解题技巧 Ⅲ 与换元法相结合 解: 练习4.求不定积分

例5. 例6. 例7. 例8.

例9. 例10. 例11.

例13. 解:因为

练习:用什么积分法求下列积分?

课堂小结与作业 (1)根据LIATE法,恰当选取u和确定v. (2)运用分部积分公式: . (3)掌握常用三种解题技巧.

思考题 在接连几次应用分部积分公式时, 应注意什么?

思考题解答 注意前后几次所选的 应为同类型函数. 例 第一次时若选 第二次时仍应选

一、有理函数的积分 二、三角函数有理式的积分 三、简单无理函数的积分 6.3 几类特殊函数的 不定积分 一、有理函数的积分 二、三角函数有理式的积分 三、简单无理函数的积分

一、有理函数的积分 有理函数的定义: 两个多项式的商表示的函数称之.

假定分子与分母之间没有公因式 这有理函数是真分式; 这有理函数是假分式; 利用多项式除法, 假分式可以化成一个多项式和一个真分式之和. 例 难点 将有理函数化为部分分式之和.

有理函数化为部分分式之和的一般规律: (1)分母中若有因式 ,则分解后为 特殊地: 分解后为

(2)分母中若有因式 ,其中 则分解后为 特殊地: 分解后为

真分式化为部分分式之和的待定系数法 例1

例2 代入特殊值来确定系数 取 取 取 并将 值代入

例3 整理得

例4 求积分 解

例5 求积分 解

例6 求积分 令 解

说明 将有理函数化为部分分式之和后,只出现三类情况: 多项式; 讨论积分 令

记 则

这三类积分均可积出, 且原函数都是初等函数. 结论 有理函数的原函数都是初等函数.

二、三角函数有理式的积分 三角有理式的定义: 由三角函数和常数经过有限次四则运算构成的函数称之.一般记为

令 (万能置换公式)

例7 求积分 解 由万能置换公式

例8 求积分 解(一)

解(二) 修改万能置换公式, 令

解(三) 可以不用万能置换公式. 结论 比较以上三种解法, 便知万能置换不一定是最佳方法, 故三角有理式的计算中先考虑其它手段, 不得已才用万能置换.

例9 求积分 解

三、简单无理函数的积分 讨论类型 解决方法 作代换去掉根号. 例10 求积分 解 令

例11 求积分 解 令 说明 无理函数去根号时, 取根指数的最小公倍数.

例12 求积分 解 先对分母进行有理化 原式

四、小结 有理式分解成部分分式之和的积分. (注意:必须化成真分式) 三角有理式的积分.(万能置换公式) (注意:万能公式并不万能) 简单无理式的积分.

思考题 将分式分解成部分分式之和时应注意什么?

思考题解答 分解后的部分分式必须是最简分式.

不定积分 习题课

一、主要内容 原 函 数 不 定 积 分 积分法 选 择 u 有 效 方 法 基 本 积 分 表 分部 积分法 直接 积分法 第一换元法 原 函 数 不 定 积 分 选 择 u 有 效 方 法 基 本 积 分 表 分部 积分法 积分法 直接 积分法 第一换元法 第二换元法 几种特殊类型 函数的积分

1、原函数 定义 原函数存在定理 即:连续函数一定有原函数.

2、不定积分 (1) 定义

(2) 微分运算与求不定积分的运算是互逆的. (3) 不定积分的性质

3、基本积分表 是常数)

4、直接积分法 由定义直接利用基本积分表与积分的性质求不定积分的方法. 5、第一类换元法 第一类换元公式(凑微分法)

常见类型:

6、第二类换元法 第二类换元公式

常用代换:

7、分部积分法 8.选择u的有效方法:LIATE选择法 分部积分公式 L----对数函数; I----反三角函数; A----代数函数;

9、几种特殊类型函数的积分 (1)有理函数的积分 定义 两个多项式的商表示的函数称之. 真分式化为部分分式之和的待定系数法

四种类型分式的不定积分 此两积分都可积,后者有递推公式

(2) 三角函数有理式的积分 定义 由三角函数和常数经过有限次四则运算构成的函数称之.一般记为 令

(3) 简单无理函数的积分 讨论类型: 解决方法: 作代换去掉根号.

二、典型例题 例1 解

例2 解

例3 解

例4 解 (倒代换)

例5 解

解得

例6 解

例7 解

例8 解

例9 解

例10 解

例11 解