高等数学 高等数学精品课程小组 成都理工大学工程技术学院.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第七节 曲线的弯 曲程度 与切线的转角有关 与曲线的弧长有关 机动 目录 上页 下页 返回 结束 主要内容 : 一、 弧微分 二、 曲率及其计算公式 三、 曲率圆与曲率半径 平面曲线的曲率 第三章 第三章.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
§3平面曲线的弧长与曲率.
第7章 导数与微分的MATLAB求解 编者.
圆 与 的 位 置 关 系 圆与圆的位置关系 新县第三初级中学 邱家胜.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
设立体介于x=a,x=b之间,A(x)表示过
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
不确定度的传递与合成 间接测量结果不确定度的评估
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数的应用 第一节 微分中值定理 第二节 洛必达法则 第三节 函数的单调性及其极值 第四节 曲线的凹凸性 函数图形的描绘
第三节 中值定理 导数的应用 § 中值定理 § 洛必达法则 § 泰勒公式 § 导数的应用.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
初中数学 九年级(下册) 5.2 二次函数的图像和性质(4).
余角、补角.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
计算机数学基础 主讲老师: 邓辉文.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
高等数学 西华大学应用数学系朱雯.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
抛物线的几何性质.
3.1.3 导数的几何意义.
3.1.3 导数的几何意义.
函 数 连 续 的 概 念 淮南职业技术学院.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
1.4.3正切函数的图象及性质.
2019/5/20 第三节 高阶导数 1.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
正弦函数的性质与图像.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
三角 三角 三角 函数 余弦函数的图象和性质.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

高等数学 高等数学精品课程小组 成都理工大学工程技术学院

第七节 曲 率 一、弧微分 二、曲率及其计算公式 三、曲率圆与曲率半径 成都理工大学工程技术学院

一、弧微分 规定:  成都理工大学工程技术学院

单调增函数 如图,   弧微分公式 成都理工大学工程技术学院

二、曲率及其计算公式 1、曲率的定义 曲率是描述曲线局部性质(弯曲程度)的量. ) ) 弧段弯曲程度 越大转角越大 转角相同弧段越 短弯曲程度越大 成都理工大学工程技术学院

y x o 设曲线C是光滑的, ( ) 定义 ( 曲线C在点M处的曲率 成都理工大学工程技术学院

注意: 2、曲率的计算公式 (1) 直线的曲率处处为零; (2) 圆上各点处的曲率等于半径的倒数,且半径 越小曲率越大. 成都理工大学工程技术学院

成都理工大学工程技术学院

例1 解 显然, 成都理工大学工程技术学院

三、曲率圆与曲率半径 定义 成都理工大学工程技术学院

注意: 1.曲线上一点处的曲率半径与曲线在该点处的曲率互 为倒数. 2.曲线上一点处的曲率半径越大,曲线在该点处的曲 率越小(曲线越平坦);曲率半径越小,曲率越大(曲线 越弯曲). 3.曲线上一点处的曲率圆弧可近似代替该点附近曲线 弧(称为曲线在该点附近的二次近似). 成都理工大学工程技术学院

砂轮磨削其内表面,问用直径多大的砂轮才比较合适? 例2 设工件内表面的截线为抛物线 .现在要用 砂轮磨削其内表面,问用直径多大的砂轮才比较合适? 解 为了在磨削时不使砂轮与工件接触处附近的那部 分工件磨去太多,砂轮的半径应不大于抛物线上各点处 曲率半径中的最小值.由本节例1可知,抛物线在其顶点 处的曲率半径最小。因此 所以,K=0.8 因而,求得抛物线顶点处的曲率半径 成都理工大学工程技术学院