角 动 量 继续寻找运动状态中的不变量.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
理论力学 有心运动和二体问题
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
高一物理课件 ---万有引力定律 复习 历史回顾 万有引力定律的提出 小结 巩固练习 作业.
物理学中的数学故事 10电力 郑锴.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
3.4 空间直线的方程.
碰撞 两物体互相接触时间极短而互作用力较大
教学基本要求 明确冲量是力对时间的积累效应,掌握动量原理,注意动量的瞬时性、矢量性和相对性。
功能原理 机械能守恒 第03-2讲 第三章 动量守恒和机械能守恒 §3-4 动能定理 本次课内容 §3-5 保守力与非保守力 势能
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
《第三章 刚体力学》总结及课堂练习 一、描述刚体定轴转动的物理量 线量和角量的关系 匀角加速转动公式.
第5章   动能定理 在笛卡儿提出动量守恒原理后42年,德国数学家、哲学家莱布尼兹(Leibniz,1646~1716)提出了“活力”概念及“活力”守恒原理。和笛卡儿一样,莱布尼兹也相信宇宙中运动的总量必须保持不变,不过和笛卡儿不同,他认为应该用 mv2 表示这个量,而不是 mv。 莱布尼兹与笛卡儿关于.
第四章 动 量 定 理 返回主目录.
第三章 运动的守恒定律.
§4.1 能量——另一个守恒量 §4.2 力的元功 用线积分表示功 §4.3质点和质点系动能定律.
1-3 牛顿运动定律 牛顿 Issac Newton(1643-1727)杰出的英国物理学家,经典物理学的奠基人.他的不朽巨著《自然哲学的数学原理》总结了前人和自己关于力学以及微积分学方面的研究成果. 他在光学、热学和天文学等学科都有重大发现.
第五章 角动量·关于对称性 动量定理 建立了作用力与动量变化之间的关系,揭示了质点系机械运动规律的一个侧面(平动效应),而不是全貌。
第三章 动量守恒定律和能量守恒定律.
第三章 动量与角动量 (Momentum and Angular Momentum).
第二章 质点动力学 守 恒 定 律.
万有引力和航天 一.行星的运动 学习要求 ①知道地心说和日心说的基本内容。 ②知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 ③知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量无关。
第三章 万有引力定律 及其应用 第一节 万有引力定律.
万有引力定律 第一节 行星的运动.
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
10.2 立方根.
第二章 质点动力学 教学基本要求 一、掌握用牛顿第二定律解决具体问题的方法。特别是针对变力问题。 二、理解动量、冲量概念。
第二节 太阳与行星间的引力 第三节 万有引力定律
第五章 角动量•关于对称性 前言 质点的角动量 质点系的角动量定理及角动量守恒定律 质点系对质心的角动量定理和守恒定律
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第4-2讲 4-3 角动量 角动量 守恒定律 4-4 力矩作功 定轴 转动动能定理 物理学上册
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
2-7、函数的微分 教学要求 教学要点.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
乒乓球回滚运动分析 交通902 靳思阳.
全威圖書有限公司 C0062.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
第三章 辐射 学习单元2 太阳辐射.
力 学 第三章 杨维纮 中国科学技术大学 近代物理系.
第7讲 自旋与泡利原理.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
必修1 第四章 牛顿第二定律的应用 --瞬时性问题 必修1 第四章 牛顿第二定律的应用--瞬时性问题
第3章 功和能 机械能守恒定律.
圆锥曲线的统一定义.
1-1 质点运动学 位矢 坐标变量 直角坐标系: 平面极坐标系: 自然坐标系: 运动方程与轨迹方程 路程 位移.
§5.3万有引力定律 一.历史的回顾 1.地心说和本轮理论(C.Ptolemy,约前150)
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
3. 分子动力学 (Molecular Dynamics,MD) 算法
第15章 量子力学(quantum mechanics) 初步
功 能 & 机械能守恒 继续寻找运动状态中的不变量 功能&机械能守恒.
质点运动学两类基本问题 一 由质点的运动方程可以求得质点在任一时刻的位矢、速度和加速度;
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§2 方阵的特征值与特征向量.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
双曲线及其标准方程(1).
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
2.2.1质点的动量及动量定理 2.2 动量 动量守恒定律 1. 冲量 力在时间上的积累,即冲量。 恒力的冲量 (t1 → t2): z
3.2 平面向量基本定理.
第一章 力学基本定律 单位与量纲 物理量及其表述 运动描述 牛顿运动定律 刚体定轴转动.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

角 动 量 继续寻找运动状态中的不变量

课程回顾 角动量概念的引入 质点系角动量定理 角动量守恒定律:当外力对给定点的总外力矩之和为零时,体系的角动量守恒。

质心系的角动量定理 设 LC 为质心系中体系对质心的角动量,MC为外力对质心的力矩, MC惯 为惯性力对质心的力矩。则有: 由于质心系是平动系,作用在各质点上的惯性力与质量成正比,方向与质心加速度相反,对质心的力矩为: 即: 不论质心系是惯性系还是非惯性系,在质心系中,角动量定理仍然适用。

体系的角量与质心的角动量 虽然在质心系中角动量定理仍然适用,但体系在质心系中相对质心的角动量与体系在惯性系中相对原点的角动量并不相同。这一点应该是肯定的,因为即使在惯性系中相对不同的点的角动量都不相同,何况质心往往还是一个运动的点。

体系的角动量与质心的角动量 设在惯性系 K 中,体系相对原点的角动量为 L。在质心系 KC 中,体系相对于质心的角动量为 LCM,则有: 令: 称为质心角动量 称为体系相对于质心的角动量 则有: 即:体系的角动量等于质心的角动量与体系相对于质心的角动量之和。

两体问题下的角动量表达 两体运动方程: 约化质量: 按照牛顿第二运动定律表述,动量变化率为作用力,在两体问题中,动量为: 两个质点相对于质心的角动量为:

两体问题 对于质量可以比拟的孤立两体问题,总可以把其中一个物体看作固定力心,只要另一物体的质量用约化质量代替。这就是说,无固定力心的两体问题等效于一质量为的质点在固定力心的有心力作用下的运动。也就把两体问题化成单体问题。 即其运动规律满足: 其中:

质点在有心力场中的运动 有心力 所谓有心力,就是方向始终指向(或者背向)固定中心的力 该固定中心称为力心。在许多情况下,有心力的大小仅与考察点至力心的距离有关,即 有心力存在的空间称为有心力场。如万有引力场、库仑力场、分子力场。 在前面的课程中指出,有心力场都是保守力场。

有心力场质点运动的一般特征 在有心力场中,质点运动方程为: 其特征为: (1) 运动必定在一个平面上 – 有心力轨道定律 当质点的初速度给定后,质点只能在初速度与初始矢径所构成的平面内运动。往往用平面极坐标描述运动。取力心为原点,运动方程则为

(2) 两个守恒量 有心力对原点力矩为零,角动量守恒 对上式两边×r后再对时间积分得到: 有心力是保守力,质点机械能守恒

(3) 有效势能与轨道特征 因L是运动常量,故机械能守恒定律可写为: 为等效斥力,对应一斥力 mL2/r3 作用在质点上,Ep(r)视具体的有心力形式而定。 如果只需要知道轨道特征而不求详细的运动情况,那么利用: 掠面速度的两倍

得到: 令u=1/r

如果有心力为万有引力的情况

那么可以有 其中 这是圆锥曲线方程:

如果有心力为万有引力的情况 则有: 根据有效势能表达式做出势能曲线

利用势能曲线对引力场轨道特征的讨论 质点总能量E的大小决定了质点在有心力场中的运动范围,即质点可做不同类型的轨道运动。 拱点的性质: 在拱点处,r取极值,则有 那么可以得到: 解该方程获得拱点处r值。

讨论: 1) E>0,只有一个拱点 对应双曲线情况

2) E=0,只有一个拱点 对应抛物线情况 3) Emin<E<0,有两个拱点 对应椭圆情况 4) E=Emin,两个拱点重合 对应圆的情况

开普勒第三定律的证明 任何行星绕太阳运动的周期的平方与该行星椭圆轨道的半长轴的立方成正比 根据前面的计算 那么 这是一个与行星无关的常数

如何由开普勒定律推出万有引力定律? 根据开普勒第二定律,行星角动量守恒,必定受到以太阳为力心的有心力作用 。我们可以从功能原理出发求出行星动能的增量: 以太阳为极点的极坐标系中,行星动能可以表示为: 由开普勒第一定律: 由开普勒第二定律

那么动能为: 再由开普勒第三定律 为与行星无关的太阳系普世常数

太阳系系统为什么是稳定的? 牛顿提出万有引力理论的时候,有人就问:既然宇宙间(太阳系)只有引力,为什么这些物体不最终塌缩到一起,还能处于相对分散的状态? 第一个做出正确解释的是法国科学家、天文学家P.-S. Laplace。 从前面的推导可以直接知道,只要存在不为零的初始角动量,系统就是稳定的(不考虑太阳和行星的尺寸。) 初始角动量在这里扮演斥力的角色,而且随着r的减小,斥力逐渐增大,变化趋势大于万有引力的变化趋势,在某个r将会阻止两物体距离进一步缩小。 可以说初始角动量使得我们处在的太阳系行星系统稳定存在。