*第十节 最小二乘法 第九章 问题的提出: 已知一组实验数据 求它们的近似函数关系 y=f (x) . 需要解决两个问题:

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量. 再例如, 既容易计算又是较好的近似值 问题 : 这个线性函数 ( 改变量的主要部分 ) 是否 所有函数的改变量都有 ? 它是什么 ? 如何求 ?
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
§3.4 空间直线的方程.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
第七章 空间解析几何 §5 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两空间直线的夹角
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
第三章 函数逼近 — 最佳平方逼近.
认识结果语境论.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
不确定度的传递与合成 间接测量结果不确定度的评估
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
§5 曲线拟合的最小二乘法 一般的最小二乘逼近(曲线拟合的最小二乘 法)的一般提法是: 对给定的一组数据 ,要求在函数类 中找
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
高等数学 西华大学应用数学系朱雯.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
*第十节 最小二乘法 第九章 问题的提出: 已知一组实验数据 求它们的近似函数关系 y=f (x) . 需要解决两个问题:
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
1.2 子集、补集、全集习题课.
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
直线和圆的位置关系 ·.
一元二次不等式解法(1).
概率论与数理统计B.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
§2 方阵的特征值与特征向量.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
第三章 函数 逼近 — 曲线拟合的最小二乘法.
数学模型实验课(二) 最小二乘法与直线拟合.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

*第十节 最小二乘法 第九章 问题的提出: 已知一组实验数据 求它们的近似函数关系 y=f (x) . 需要解决两个问题: 1. 确定近似函数的类型 根据数据点的分布规律 根据问题的实际背景 2. 确定近似函数的标准 实验数据有误差, 不能要求

偏差 有正有负, 为使所有偏差的绝对 值都较小且便于计算, 可由偏差平方和最小 来确定近似函数 f (x) . 最小二乘法原理: 设有一列实验数据 , 它们大体 分布在某条曲线上, 通过偏差平方和最小求该曲线的方 法称为最小二乘法, 找出的函数关系称为经验公式 .

特别, 当数据点分布近似一条直线时, 问题为确定 a, b 使 满足: 令 称为法方程组 (注意其特点) 解此线性方程组 即得 a, b 得

例1. 为了测定刀具的磨损速度, 每隔 1 小时测一次刀 具的厚度, 得实验数据如下: 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 找出一个能使上述数据大体适合的经验公式. 解: 通过在坐标纸上描点可看出它们 大致在一条直线上, 故可设经验公式为 列表计算:

0 0 27.0 0 7 49 24.8 137.6 28 140 208.5 717.0 得法方程组 解得 故所求经验公式为 为衡量上述经验公式的优劣, 计算各点偏差如下:

偏差平方和为 称为均方误差, 对本题均方误差 它在一定程度上反映了经验函数的好坏. 0 1 2 3 4 5 6 7 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 0 1 2 3 4 5 6 7 27.125 26.518 25.911 25.303 26.821 26.214 25.607 25.000 -0.125 -0.018 0.189 -0.003 -0.021 0.086 0.093 -0.200 偏差平方和为 称为均方误差, 对本题均方误差 它在一定程度上反映了经验函数的好坏.

例2. 在研究某单分子化学反应速度时, 得到下列数据: 57.6 41.9 31.0 22.7 16.6 12.2 8.9 6.5 3 6 9 12 15 18 21 24 1 2 3 4 5 6 7 8 其中 表示从实验开始算起的时间, y 表示时刻  反应 物的量. 试根据上述数据定出经验公式 解: 由化学反应速度的理论知, 经验公式应取 其中k , m 为待定常数. 对其取对数得 注:1. 书中取常用对数是便于在常用对数坐标纸上看到数据分布接近一条直线, 对本题毋需这么做. 2.此处数据用 MathCad 算得, 由于舍入误差不同, 与书中答案略有差异 (书中取的是常用对数) (线性函数)

因此 a , b 应满足法方程组: 经计算得 解得: 所求经验公式为 其均方误差为 注: 此处数据用 MathCad 算得, 由于舍入误差不同, 与书中答案略有差异 所求经验公式为 其均方误差为

通过计算确定某些经验公式类型的方法: 观测数据: 用最小二乘法确定a, b

作业 P128 1 , 2 习题课