换元积分法 直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法 —— 换元积分法和分部积分法。 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
引 言 第三章 一元函数积分学 积分学分为不定积分与定积分两 部分.不定积分是作为函数导数的 反问题提出的,而定积分是作为微 分的无限求和引进的,两者概念不 相同,但在计算上却有着紧密的内 在联系.
换元积分法 一、第一类换元积分法 二、第二类换元积分法 一、第一类换元法 例1例1 原因在于被积函数 cos 2x 与公式 中的被 积函数不一样. 如果令 u=2x ,则 cos2x=cos u , d u=2dx , 从而 所以有 ? 分析.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第八章 不定积分 第一节 不定积分概念与基本积分公式 第二节 换元积分法与分部积分法 第三节 有理函数和可化为有理函数的不定积分.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
§3.1 导数引例 一、瞬时速度问题 一物体作直线变速运动,走过的距离 S 与时间 t 的关 系为 极限 存在, 该极限就是物体在.
高等数学教学课件 分部积分法 湄洲湾职业技术学院 傅仙发. 换元积分法是一种重要的积分法,可以求许多函数 的积分。但还有一些积分无法计算,如 等,像以上这样的积分都不能利用基本积分表和换元积 分法计算。本节将从函数乘积的微分公式出发,导出另 一种基本积分法 —— 分部积分法 。 回忆:函数乘积的微分运算法则?
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
§5 微分. 一 问题的提出 1 面积问题 设有一边长为 的正方形 2 自由落体问题 二 微分的定义 1 定义.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第五节 积分表的使用 一、关于积分表的说明 二、例题 结束. ( 1 )常用积分公式汇集成的表称为积分表. ( 2 )积分表是按照被积函数的类型来排列的. ( 4 )积分表见《高等数学》(四版)上册 (同济大学数学教研室主编)第 452 页. ( 3 )求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
8.2.1 换元积分法.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第八章 不定积分.
第6章 不定积分 6.1不定积分的概念与基本积分公式 6.2换元积分法 6.3分部积分法 6.4几类特殊函数的不定积分.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第四章 不定积分.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
习 题 课.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第五章 不定积分 一、不定积分的概念和性质 5.1 原函数与不定积分 通过对求导和微分的学习,我们可以从一个函数
导数的基本运算.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
2019/5/20 第三节 高阶导数 1.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
3.3.1 有理函数的积分法 1、有理函数 由两个多项式的商表示的函数. 3.3 几类特殊函数的积分法(52)
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

换元积分法 直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法 —— 换元积分法和分部积分法。 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的 积分法 —— 换元积分法。通常根据换元的先后, 把换元法分成第一类换元和第二类换元。

问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元法 说明结果正确

将上例的解法一般化: 设 则 如果 (可微) 将上述作法总结成定理,使之合法化,可得 —— 换元法积分公式

第一类换元公式(凑微分法) 说明使用此公式的关键在于将 化为 观察重点不同,所得结论不同. 定理 1

注 ① 定理说明:若已知则 因此该定理的意义就在于把 中的换成另一个 的可微函数后,式子仍成立 —— 又称为积分的形式不变性 这样一来,可使基本积分表中的积分公式 的适用范围变得更加广泛。 ②由定理可见,虽然 是一整体记号,但可把视为自变量微分 —— 凑微分

③凑微分法就在凑微分上,其基本思想就是对被积 表达式进行变形,主要考虑如何变化 凑微分法的基本思路: 与基本积分公式相比较,将不同的部分 —— 中间变量和积分变量 —— 变成相同 步骤:凑微分;换元求出积分;回代原变量 例 1 求 解(一)

解(二) 解(三) 例 2 求 解

一般地 例 3 求 解

例 4 求 解

例5例5 解 例 6 求 解

例7例7 解 注意: 分子拆项 是常用的技巧

例 8 求 解

例 9 求 解

例 10 求 解

例 11 求 原式

例 12 求 解 或

例 13 求 解 说明 当被积函数是三角函数相乘时,拆开奇 次项去凑微分.

例 14 求 解

例 15 求 解(一) (使用了三角函数恒等变形)

解(二) 解(三)

类似地可推出

解 例 16 设 求. 令

例 17 求 解

例 18 解(一)分子分母同乘以

解(二) 分子分母和差化积 解(三) 分子恰为分母的导数

第一类换元积分法在积分中是经常使用的方法, 不过如何适当地选取代换却没有一般的规律可循, 只能具体问题具体分析。要掌握好这种方法,需要熟 记一些函数的微分公式,并善于根据这些微分公式对 被积表达式做适当的微分变形,拼凑出合适的微分因 子。

问题 解决方法 改变中间变量的设置方法. 过程 令 (应用 “ 凑微分 ” 即可求出结果) 二、第二类换元法

证 设 为 的原函数, 令 则 则有换元公式 定理 2

第二类积分换元公式

例 19 求 解 令

例 20 求 解令

例 21 求 解 令

说明 (1) 以上几例所使用的均为三角代换. 三角代换的目的是化掉根式. 一般规律如下:当被积函数中含有 可令 注意:所作代换的单调性。对三角代换而言, 掌握着取单调区间即可。

说明 (2) 积分中为了化掉根式除采用三角代 换外还可用双曲代换. 也可以化掉根式 例 中, 令

说明 (3) 积分中为了化掉根式是否一定采用 三角代换(或双曲代换)并不是绝对的,需 根据被积函数的情况来定. 例 22 求 (三角代换很繁琐) 解 令

例 23 求 解 令

说明 (4) 当分母的阶较高时, 可采用倒代换 例 24 求 解 令

例 25 求 解 令 (分母的阶较高)

说明 (5) 当被积函数含有两种或两种以上的 根式 时,可采用令 (其中 为各根指数的最小公倍数) 例 26 求 解 令

基本积分表基本积分表

三、小结 两类积分换元法: (一)凑微分 (二)三角代换、倒代换、根式代换 基本积分表 (2)

思考题 求积分

思考题解答