高等数学教学课件 分部积分法 湄洲湾职业技术学院 傅仙发. 换元积分法是一种重要的积分法,可以求许多函数 的积分。但还有一些积分无法计算,如 等,像以上这样的积分都不能利用基本积分表和换元积 分法计算。本节将从函数乘积的微分公式出发,导出另 一种基本积分法 —— 分部积分法 。 回忆:函数乘积的微分运算法则?

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
换元积分法 直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法 —— 换元积分法和分部积分法。 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的.
1 、不定积分的概念与性质 2 、不定积分的计算 2.1 第一换元积分法 2.2 分步积分法 3 、定积分的概念与计算 第六章 一元函数积分学.
换元积分法 一、第一类换元积分法 二、第二类换元积分法 一、第一类换元法 例1例1 原因在于被积函数 cos 2x 与公式 中的被 积函数不一样. 如果令 u=2x ,则 cos2x=cos u , d u=2dx , 从而 所以有 ? 分析.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第八章 不定积分 第一节 不定积分概念与基本积分公式 第二节 换元积分法与分部积分法 第三节 有理函数和可化为有理函数的不定积分.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
经济数学 第四章 不定积分. 4.1 不定积分的概念与性质 4.2 不定积分的性质 4.3 不定积分的换元积分法 4.4 不定积分的分部积分法.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第五节 积分表的使用 一、关于积分表的说明 二、例题 结束. ( 1 )常用积分公式汇集成的表称为积分表. ( 2 )积分表是按照被积函数的类型来排列的. ( 4 )积分表见《高等数学》(四版)上册 (同济大学数学教研室主编)第 452 页. ( 3 )求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
8.2.1 换元积分法.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第八章 不定积分.
第6章 不定积分 6.1不定积分的概念与基本积分公式 6.2换元积分法 6.3分部积分法 6.4几类特殊函数的不定积分.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第四章 不定积分.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
习 题 课.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第五章 不定积分 一、不定积分的概念和性质 5.1 原函数与不定积分 通过对求导和微分的学习,我们可以从一个函数
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

高等数学教学课件 分部积分法 湄洲湾职业技术学院 傅仙发

换元积分法是一种重要的积分法,可以求许多函数 的积分。但还有一些积分无法计算,如 等,像以上这样的积分都不能利用基本积分表和换元积 分法计算。本节将从函数乘积的微分公式出发,导出另 一种基本积分法 —— 分部积分法 。 回忆:函数乘积的微分运算法则? 设函数, 具有连续导数。则

移项 积分 即 或 上式称为不定积分的分部积分公式。这一公式说明,若计算积分 较困难,而积分 易于计算,则可以使用分部积分法 计算。应用分部积分公式求积分的方法称为分部积分法。

为方便记忆和应用,可将分部积分公式列表: 积分 (+) (-) 微分 分部积分列表法的算法:左列函数依次求微分,右 列函数依次求积分,横向函数相乘再积分,斜向函数相 乘不积分,符号选择依次取正负。 正负交错,左微右积,斜向相乘,横向积分。

例1例1 求 解 设 , 则,。 , 所以

例2例2 求 两个不同类型函数乘积的积分,换元法失效。 若取 , , 则 , 显然, 选择不当,积分更难进行。 解 改取 , 则 , ,

应用分部积分法求积分时,一般需要将被积函数的 一部分 “ 凑微分 ” ,并当作 ,剩余部分当作函数 ,因 此分部积分法的关键在于适当地选取 和 。 和 的选取应注意: 易于由 直接求得,而 比 更易于计算。当分部积分法熟练后,可不必明确地设出 和 ,而直接应用公式。 分部积分法适合求两个不同类型函数乘积的积分。

例3例3 求 解

例4例4 求 解

有时,在一些较复杂的积分问题中,有可能需要多次 应用分部积分法,这时使用分部积分列表法更方便。 例5例5 求 解

若用分部积分列表法,可直接写出结果: (-) (+) (-)

例6例6 求 解 有时候使用若干次分部积分可导出所求积分的方程式,然后解 此方程求出积分。 注意循 环形式

例7例7 求 解

应用分部积分法的常见积分形式及 和 的选取方 法: ⑴ , , , 一般可设 ,被积表达式的其余部分设为 。 ⑵ , , , 一般可设 ,被积表达式的其余部分设为 。 上述情况 换为多项式时仍然成立,常数也视为幂 函数。 ⑶ , ,既可设 ,也可 设 。但一经选定,再次分部积分时,必须仍按 原来的选择。

例8例8 求 解 先用换元积分法。令 ,则 , 。 所以 (再用分部积分法) 可见,有的积分问题需要同时用到换元积分法和分部积分法。

不定积分的方法较多,思路也比较开阔,各种解法都有自己的 特点,学习中要注意不断积累经验。 应该注意:虽然初等函数在其定义区间内一定存在原函数族, 但有些原函数族不是初等函数,无法用解析式表达。即初等函数在 其定义区间内一定可积,但有些初等函数的积分却无法表达。 如 , , 等。 换元积分法、分部积分法只能解决一些简单的不定积分。在实际 应用中,如果遇到较复杂的不定积分,需要借助积分表查出积分结 果,或借助数学软件在计算机上求出积分结果。但初学者还应要求 掌握积分方法,并能利用不同的积分方法求简单的不定积分。

回去回顾分部积分法,并做完 课后作业加以巩固