绪 论 一、课程内容 线性代数是是中学代数的继续和发展。

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
《线性代数》 下页结束 返回下页 任课教师:王传伟 部 门:信息学院 办公室:文理大楼 725 室 电 话: : 快 乐 学 习快 乐 学 习 Linear Algebra Fetion No : QQ.
§3.4 空间直线的方程.
高等代数与空间解析几何 第一章 n阶行列式 1.1 n阶行列式 二阶、三阶行列式 n阶行列式的概念来源于对线性方程组的研究:
代数方程总复习 五十四中学 苗 伟.
第五章 二次型 §5.1 二次型的矩阵表示 §5.2 标准形 §5.3 唯一性 §5.4 正定二次型 章小结与习题.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
12.8 简单的二元 二次方程(一).
8.2消元 解二元一次方程组(1) 点击页面即可演示.
第3节 二次型与二次型的化简 一、二次型的定义 二、二次型的化简(矩阵的合同) 下页.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
第二十一章 代数方程 复习课(一).
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
第一节 二阶与三阶行列式 线性代数 扬州大学数学科学学院.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
第五章 矩阵与行列式 §5.4 逆矩阵 §5.5 矩阵的初等变换.
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第二章 行列式 第一节 二阶、三阶行列式.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三章 导数与微分 习 题 课 主要内容 典型例题.
第八章 二元一次方程组 8.1 二元一次方程组 8.2 消元 ——二元一次方程组的解法 8.3 实际问题与二元一次方程组
加减法解二元一次方程组 肇庆市睦岗镇大龙学校 彭素冉.
第二章 矩阵(matrix) 第8次课.
元素替换法 ——行列式按行(列)展开(推论)
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 行 列 式 在初等数学中,我们用代入消元法或加减消元法求解 二元和三元线性方程组,可以看出,线性方程组的解完
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
6.4不等式的解法举例(1) 2019年4月17日星期三.
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时7分 / 45.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
§8.3 不变因子 一、行列式因子 二、不变因子.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
1.非线性规划模型 2.非线性规划的Matlab形式
建模常见问题MATLAB求解  .
一元二次不等式解法(1).
2.2矩阵的代数运算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
2019/5/20 第三节 高阶导数 1.
§2 方阵的特征值与特征向量.
加减消元法 授课人:谢韩英.
我们能够了解数学在现实生活中的用途非常广泛
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
第10章 代数方程组的MATLAB求解 编者.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
Presentation transcript:

绪 论 一、课程内容 线性代数是是中学代数的继续和发展。 绪 论 一、课程内容 线性代数是是中学代数的继续和发展。 “线性”即一次,一次函数、方程、不等式均称为线性的。本课程一重要内容——解含n个未知数、m个方程的任一线性方程组。课程给出了一套有关线性方程组的理论,其中用到一些新知识,如矩阵(Ch2) 、向量(Ch3)及相关概念。 行列式(Ch1)与矩阵概念是人们从求解线性方程组的需要中建立起来的,又远远越出求解线性方程组的范围,成为重要的数学工具。矩阵在众多数学分支以及自然科学、现代经济学、

工程技术等方面也有广泛应用。教材在Ch4进一步研究矩阵的有关问题, Ch5也以矩阵为工具。 二、课程应用 线性问题广泛存在于自然科学、管理科学和技术科学的各个领域,某些非线性问题在一定条件下也可以线性化,在线性问题中一次不等式又可以通过引进新变量转化为等式(“线性规划”课程)——即线性方程。 因此线性代数的概念和方法应用广泛,尤其计算机的应用使得复杂的线性模型得以迅速、准确求解。

三、课程特点 学习方法 代数繁且抽象。只有一步步稳打稳扎,才能学好. 预习 适当笔记 适时复习 独立作业 及时小结 四、作业要求: 及时、独立完成; 格式; 上交时间. 五、参考书目 1.《练习卷》 2.《线性代数学习指导》

线性代数 第一章 行列式 第一节 二阶与三阶行列式

一、二阶行列式的引入 用消元法解二元线性方程组

方程组的解为 由方程组的四个系数确定.

由四个数排成二行二列(横排称行、竖排 称列)的数表 定义 即

二阶行列式的计算 对角线法则 主对角线 副对角线 对于二元线性方程组 若记 系数行列式

则二元线性方程组的解为 注意 分母都为原方程组的系数行列式.

例1 解

二、三阶行列式 定义 记 (6)式称为数表(5)所确定的三阶行列式.

.列标 行标 三阶行列式的计算 (1)沙路法

(2)对角线法则 注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. 说明1 对角线法则只适用于二阶与三阶行列式.

2. 三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积,其中三项为正,三项为 负. 利用三阶行列式求解三元线性方程组 如果三元线性方程组 的系数行列式

则三元线性方程组的解为:

例2 解 按对角线法则,有

例3 解 方程左端

例4 解线性方程组 解 由于方程组的系数行列式

同理可得 故方程组的解为:

三、小结 二阶和三阶行列式是由解二元和三元线性方 程组引入的. 对角线法则 二阶与三阶行列式的计算

思考题

思考题解答 解 设所求的二次多项式为 由题意得 得一个关于未知数 的线性方程组, 又 得 故所求多项式为