函数型.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
6.2 二次函数图象和性质 (1) 1 、函数 y = x 2 的图像是什么样子呢 ? 2 、如何画 y=x 2 的图象呢 ?
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
一元二次方程的应用 经济类 青曲中学 李丁平.
如果你是老板,如何应用数学的知识进行分析,对商品进行合理定价使利润最大呢?
一元二次方程的应用 利润问题.
4.3用一元二次方程解决问题(4) 泰州市大冯初级中学 孙素华.
函数与方程、不等式专题.
相似三角形专题复习 ----几个常用基本图形的应用
第二章 二次函数 第二节 结识抛物线
10.2 立方根.
一次函数的图象复习课 南华实验学校 初二(10)班 教师:朱中萍.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
2-7、函数的微分 教学要求 教学要点.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
余角、补角.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
北师大版数学 《旋转》系列微课 主讲:胡 选 单位:深圳市坪山新区光祖中学.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
如图,平行四边形ABCD,AC、BD相交于点O,过点O的EF与AD、BC交于E、F两点,OE与OF,相等吗?为什么?
双曲线的简单几何性质 杏坛中学 高二数学备课组.
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
第一章 函数与极限.
一次函数的图像和性质 y x.
数列.
实数与向量的积.
正方形 ——计成保.
一次函数复习.
第四章 一次函数 4. 一次函数的应用(第1课时).
. 1.4 全等三角形.
一个直角三角形的成长经历.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
3.3 垂径定理 第2课时 垂径定理的逆定理.
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
抛物线的几何性质.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
直线和圆的位置关系 ·.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
一元二次不等式解法(1).
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
1.1二次函数.
第二十六章 反比例函数 反比例函数的意义 北京市清华大学附属中学 张 钦.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
高中数学必修 平面向量的基本定理.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
用待定系数法求二次函数的解析式.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
反比例函数(复习课) y o x 常州市新北区实验中学 高兴林.
再认相似三角形 普陀二中 洪秀捷.
反比例函数(二) y o x.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

函数型

函数思想 函数思想是指在运动变化中,充分利用函数的概念、图像及性质去观察问题,分析问题、转化问题、解决问题。 用函数思想解题,主要利用两点: (1)分析自变量的取值范围,确定有关字母的值或值的范围; (2)根据函数的图像与性质,寻找解题思路。

函数解析式的确定 例1. (2009·重庆市)如图,一次函数 的图 象与反比例函数 的图象相交于A、B两点. 例1. (2009·重庆市)如图,一次函数 的图 象与反比例函数 的图象相交于A、B两点. (1)根据图象,分别写出点A、B的坐标; (2)求出这两个函数的解析式. 1 B A O x y

例2如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。 (1)求抛物线的解析式及点A、B、C的坐标; (2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形; M 例9图

阅读函数图象,解决实际问题 例1:某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示. (1)当0≤x≤200,且x为整数时,y关于x的函数解析式为 ; 当200<x≤300,且x为整数时,y关于x的函数解析式为 . (2)要使游乐场一天的赢利超过1000元,试问该天至少应售出多少张门票? (3)请思考并解释图像与y轴交点(0,-1000)的实际意义. (4)根据图像,请你再提供2条信息。 例5图

例2 小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还。”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是 ( ) C D A B

函数与方程: [例](黄冈市,2000)已知关于x.y的方程组 有一个实数解,且反比例函 数 的图像在每个象限内,y都随x的增 大而增大,如果点(a,3)在双曲线 上,求a的值.

函数的应用: 例 1 为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款。已知该产品的生产成本为每件40元,员工每人每月工资为2500元,公司每月需支付其他费用15万元,该产品每月销售y(万件)与销售单价x(元)之间的函数关系如图所示。 (1)求每月销售量y(万件)与销售单价x(元)之间的函数关系。 (2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额--生产成本—员工工资—其他费用),该公司可安排员工多少人? (3)若该公司有80名员工,则该公司最早可在几个月还清无息贷款?

y(元) 4 2 1 80 40 60 x(元)

运用 抽象 问题的解决 实际问题 数学问题 数学知识 转化 返回解释 检验 例2 某商场销售一批名脾衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现每件衬衫降价1元, 商场平均每天可多售出2件。 (1)若商场平均每天要盈利1200元,每件衬衫要降价多少元? (2)每件衬衫降价多少元时,商场平均每天盈利最多? 运用 抽象 问题的解决 实际问题 数学问题 数学知识 转化 返回解释 检验

练.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数关系如图所示,结合图象回答下列问题: (1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟? (2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式; (3)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.

历年真题再现

8.已知函数 的图象如图,则 的图象可能是…………………………【 】(09安徽) 8.已知函数 的图象如图,则 的图象可能是…………………………【 】(09安徽) 1 O x y -1 第8题图 A B C D

14.如图为二次函数y=ax2+bx+c的图象,在下列说法中: ①ac<0; ②方程ax2+bx+c=0的根是x1= -1, x2= 3 ③a+b+c>0 ④当x>1时,y随x的增大而增大。 正确的说法有_____________。(把正确的答案的序号都填在横线上)(08安徽) 第12题图 第13题图 第14题图

9.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是…【 】(07安徽)

(07安徽)23.按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求: (Ⅰ)新数据都在60~100(含60和100)之间; (Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。 (1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述两个要求; 【解】 (2)若按关系式y=a(x-h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)

23.刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾。一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。 ⑴若二分队在营地不休息,问二分队几小时能赶到A镇? ⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时? ⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。(08安徽)

第23题图

(09安徽)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义. (2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果. (3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.

批发单价(元) ① ② O 批发量(kg) 日最高销量(kg) 第23题图(1) (6,80) (7,40) 零售价(元) 第23题图(2) 60 20 4 批发单价(元) 5 批发量(kg) ① ② 第23题图(1) O 6 2 40 日最高销量(kg) 80 零售价(元) 第23题图(2) 4 8 (6,80) (7,40)