附录Ⅰ 数学家简介 笛卡儿 莱布尼兹 伯努利 雅可比 狄利克雷 斯托克斯 03 世纪 刘徽 16 世纪 17 世纪 费马 牛顿 洛必达 泰勒

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
Yunnan University Chapt 5. 微分学基本定理及其应用 导 数导 数 函数性质 中值定理 §1. 中值定理 §2. 泰勒公式 §3. 函数的升降、凸性与极值 §4. 平面曲线的曲率 §5. 待定型.
函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数. 二、 连续与间断 一、 函数 三、 极限 函数与极限.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
计算机数学基础(下) --数值分析 教师:孙继荣 电话: 028 -
微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 微分描述函数变化程度 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Ferma 在研究 极值问题中提出. 英国数学家 Newton.
数理方法 A 第 0 章 绪论 薛力 海韵物理楼 544. 第 0 章绪论 数学物理方法课程的起源 数学物理方法课程的学习目的 数学物理方法课程的学习内容 数学物理方法课程的学习方法 课件下载地址: ftp://astro.xmu.edu.cn/Mathematical_Methods_in_Physics/
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
第三章 函数逼近 — 最佳平方逼近.
第四章 解析函数 的级数展开.
《高等数学》(理学) 常数项级数的概念 袁安锋
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
绪 论 金建华 2010年9月.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或. 一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或.
伯努利介绍   丹•伯努利(Daniel Bernoull,1700—1782):瑞士科学家,曾在俄国彼得堡科学院任教,他在流体力学、气体动力学、微分方程和概率论等方面都有重大贡献,是理论流体力学的创始人。
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第十八章 含参变量的反常积分 教学目标: 1°使学生掌握含参变量反常积分概念; 2°使学生学会用定义证明含参变量反常积分收敛性。
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
问题1 设 问.
复变函数与积分变换 主讲: 王洪涛 QQ: Tel:
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
数学史教程 --李文林 第七章 分析时代--01 主 讲 人  孙利.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
第十一章 无穷级数 返回.
计算机数学基础 主讲老师: 邓辉文.
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
第一章 导数及其应用 函数的平均变化率 瞬时速度与导数.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第九章 数项级数 §9.1 级数的收敛性 §9.2 正项级数 §9.3 一般项级数.
作业 P152 习题 复习:P 预习:P /5/2.
第三单元 第2课 实验 一元函数的积分 实验目的:掌握matlab求解有关不定积分和定积分的问题,深入理解定积分的概念和几何意义。
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
我们能够了解数学在现实生活中的用途非常广泛
第六模块 无穷级数 第五节 函数的幂级数展开 一、 麦克劳林 (Maclaurin) 公式 二、 直接展开法 三、 间接展开法.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
Presentation transcript:

附录Ⅰ 数学家简介 笛卡儿 莱布尼兹 伯努利 雅可比 狄利克雷 斯托克斯 03 世纪 刘徽 16 世纪 17 世纪 费马 牛顿 洛必达 泰勒 附录Ⅰ 数学家简介 03 世纪 刘徽 笛卡儿 16 世纪 17 世纪 费马 牛顿 莱布尼兹 伯努利 洛必达 泰勒 麦克劳林 18 世纪 欧拉 拉格朗日 傅里叶 高斯 柯西 阿贝尔 19 世纪 雅可比 狄利克雷 维尔斯特拉斯 斯托克斯 20 世纪 华罗庚 (点击名字可显示简介)

刘徽(约225 – 295年) 我国古代魏末晋初的杰出数学家. 他撰写的《重 差》对《九章算术》中的方法和公式作了全面的评 注, 指出并纠正了其中的错误 , 在数学方法和数学 理论上作出了杰出的贡献 . 他的 “ 割圆术 ” 求圆周率  的方法 : “ 割之弥细 , 所失弥小, 割之又割 , 以至于不可割 , 则与圆合体而无所失矣 ” 它包含了“用已知逼近未知 , 用近似逼近精确”的重要 极限思想 .

笛卡儿(1596 – 1650) 法国哲学家, 数学家, 物理学家, 他 是解析几何奠基人之一 . 1637年他发 表的《几何学》论文分析了几何学与 代数学的优缺点, 进而提出了 “ 另外 一种包含这两门科学的优点而避免其缺点的方法”, 把几何问题化成代数问题 , 给出了几何问题的统一 作图法, 从而提出了解析几何学的主要思想和方法, 恩格斯把它称为数学中的转折点.

费马(1601 – 1665) 法国数学家, 他是一位律师, 数学 只是他的业余爱好. 他兴趣广泛, 博 览群书并善于思考, 在数学上有许多 重大贡献. 他特别爱好数论, 他提出 的费马大定理: 至今尚未得到普遍的证明. 他还是微积分学的先驱 , 费马引理是后人从他研究最大值与最小值的方法中 提炼出来的.

牛顿(1642 – 1727) 伟大的英国数学家 , 物理学家, 天文 学家和自然科学家. 他在数学上的卓越 贡献是创立了微积分. 1665年他提出正 流数 (微分) 术 , 次年又提出反流数(积分)术, 并于1671 年完成《流数术与无穷级数》一书 (1736年出版). 他 还著有《自然哲学的数学原理》和《广义算术》等 .

莱布尼兹(1646 – 1716) 他和牛顿同为 德国数学家, 哲学家. 他在《学艺》杂志 微积分的创始人 , 上发表的几篇有关微积分学的论文中, 有的早于牛顿, 所用微积分符号也远远优于牛顿 . 系统地阐述二进制计 他还设计了作乘法的计算机 , 数法 , 并把它与中国的八卦联系起来 .

伯努利(1654 – 1705) ( 雅各布第一 · 伯努利 ) 瑞士数学家, 他家祖孙三代出过十多 位数学家. 1694年他首次给出了直角坐 标和极坐标下的曲率半径公式, 1695年 年提出了著名的伯努利方程, 1713年出 版了他的巨著《猜度术》, 这是组合数学与概率论史 上的一件大事, 书中给出的伯努利数在很多地方有用, 而伯努利定理则是大数定律的最早形式. 此外, 他对 双纽线, 悬链线和对数螺线都有深入的研究 .

洛必达(1661 – 1704) 法国数学家, 他著有《无穷小分析》 (1696), 并在该书中提出了求未定式极 限的方法, 后人将其命名为“ 洛必达法 则 ”. 他在15岁时就解决了帕斯卡提出 的摆线难题 , 以后又解出了伯努利提出的“ 最速降 线 ” 问题 , 在他去世后的1720 年出版了他的关于圆 锥曲线的书 .

泰勒 (1685 – 1731) 英国数学家, 他早期是牛顿学派最 优秀的代表人物之一 , 重要著作有: 《正的和反的增量方法》(1715) 《线性透视论》(1719) 他在1712 年就得到了现代形式的泰勒公式 . 他是有限差分理论的奠基人 .

麦克劳林 (1698 – 1746) 英国数学家, 著作有: 《流数论》(1742) 《有机几何学》(1720) 《代数论》(1742) 在第一本著作中给出了后人以他的名字命名的 麦克劳林级数 .

欧拉 (1707 – 1783) 瑞士数学家. 他写了大量数学经典 著作, 如《无穷小分析引论 》, 《微 分学原理 》, 《积分学原理》等, 还 写了大量力学, 几何学, 变分法教材. 他在工作期间几乎每年都完成 800 页创造性的论文. 他的最大贡献是扩展了微积分的领域, 为分析学的重 要分支 (如无穷级数, 微分方程) 与微分几何的产生和 发展奠定了基础. 在数学的许多分支中都有以他的名 字命名的重要常数, 公式和定理.

拉格朗日(1736 – 1813) 法国数学家. 他在方程论, 解析函数论, 及数论方面都作出了重要的贡献, 近百 余年来, 数学中的许多成就都直接或间 接地溯源于他的工作, 他是对分析数学 产生全面影响的数学家之一.

傅里叶 (1768 – 1830) 法国数学家. 他的著作《热的解析 理论》(1822) 是数学史上一部经典性 文献, 书中系统的运用了三角级数和 三角积分, 他的学生将它们命名为傅 里叶级数和傅立叶积分. 他深信数学是解决实际问题 最卓越的工具. 以后以傅立叶著作为基础发展起来的 傅立叶分析对近代数学以及物理和工程技术的发展都 产生了深远的影响.

高斯(1777 – 1855) 德国数学家、天文学家和物理学家, 是与阿基米德, 牛顿并列的伟大数学家, 他的数学成就遍及各个领域 , 在数论、 代数、非欧几何、 微分几何、 超几何 级数、复变函数及椭圆函数论等方面均有一系列开创 性的贡献, 他还十分重视数学的应用, 在对天文学、大 地测量学和磁学的研究中发明和发展了最小二乘法、 曲面论和位势论等. 他在学术上十分谨慎, 恪守这样的 原则: “问题在思想上没有弄通之前决不动笔”.

柯西(1789 – 1857) 法国数学家, 他对数学的贡献主要集中 在微积分学, 复变函数和微分方程方面 . 一生发表论文800余篇, 著书 7 本 , 《柯 西全集》共有 27 卷. 其中最重要的的是为巴黎综合学 校编写的《分析教程》, 《无穷小分析概论》, 《微积 分在几何上的应用》 等, 有思想有创建, 对数学的影 响广泛而深远 . 他是经典分析的奠人之一, 他为微积分 所奠定的基础推动了分析的发展.

阿贝尔(1802 – 1829) 挪威数学家, 近代数学发展的先驱者. 他在22岁时就解决了用根式解5 次方程 的不可能性问题 , 他还研究了更广的一 类代数方程, 后人发现这是一类交换群, 并称之为阿贝尔群. 在级数研究中, 他得 到了一些判敛准则及幂级数求和定理. 他是椭圆函数 论的奠基人之一, 他的一系列工作为椭圆函数研究开 拓了道路. C. 埃尔米特曾说: 阿贝尔留下的思想可供 数学家们工作150年.

雅可比(1804 – 1851) 德国数学家. 他在数学方面最主要 的成就是和挪威数学家阿贝儿相互独 地奠定了椭圆函数论的基础. 他对行列 在偏微分 式理论也作了奠基性的工作. 方程的研究中引进了“雅可比行列式”, 并应用在微积 分中. 他的工作还包括代数学, 变分法, 复变函数和微 分方程, 在分析力学, 动力学及数学物理方面也有贡献. 他在柯尼斯堡大学任教18年, 形成了以他为首的学派.

狄利克雷 (1805 – 1859) 德国数学家. 对数论, 数学分析和 数学物理有突出的贡献, 是解析数论 的创始人之一, 他是最早提倡严格化 方法的数学家. 1829年他得到了给定 函数 f (x) 的傅立叶级数收敛的第一个充分条件; 证明 了改变绝对收敛级数中项的顺序不影响级数的和, 并 举例说明条件收敛级数不具有这样的性质. 他的主要 论文都收在《狄利克雷论文集》 (1889~1897)中.

维尔斯特拉斯 (1815 – 1897) 德国数学家. 他的主要贡献是在分 析学方面. 1854年他解决了椭圆积分 的逆转问题, 还建立了椭圆函数的新 结构. 他在分析学中建立了实数理论, 给出了连续函数的严格定义 引进了极限的  –  定义, 及性质, 还构造了一个处处不可微的连续函数: 为分析学的算术化作出了重要贡献 .

斯托克斯(1819 – 1903) 英国数学物理学家. 他是19世纪英国 数学物理学派的重要代表人物之一, 其 主要兴趣在于寻求解重要数学物理问题 的有效且一般的新方法, 在1845年他导 出了著名的粘性流体运动方程 ( 后称之 为纳维 – 斯托克斯方程 ), 1847年先于 柯西提出了一致收敛的概念. 他提出的斯托克斯公式 是向量分析的基本公式. 他一生的工作先后分 五卷 出版 .

华罗庚(1910 – 1985) 我国在国际上享有盛誉的数学家. 他在解析数论, 矩阵几何学, 典型群, 自守函数论, 多复变函数论, 偏微分方 程, 高维数值积分等广泛的数学领域中, 都作出了卓越的贡献 , 发表专著与学术论文近 300 篇. 他对青年学生的成长非常关心, 他提出治学之道是 “ 宽, 专, 漫 ”, 即基础要宽, 专业要专, 要使自己的专业 知识漫到其它领域. 1984年来中国矿业大学视察时给 给师生题词: “ 学而优则用, 学而优则创 ”.