第#讲.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
《线性代数》 下页结束 返回下页 任课教师:王传伟 部 门:信息学院 办公室:文理大楼 725 室 电 话: : 快 乐 学 习快 乐 学 习 Linear Algebra Fetion No : QQ.
高等代数与空间解析几何 第一章 n阶行列式 1.1 n阶行列式 二阶、三阶行列式 n阶行列式的概念来源于对线性方程组的研究:
国家精品课 线性代数与空间解析几何 王宝玲 哈工大数学系代数与几何教研室
代数方程总复习 五十四中学 苗 伟.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
18.2一元二次方程的解法 (公式法).
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
绪 论 一、课程内容 线性代数是是中学代数的继续和发展。
第一节 二阶与三阶行列式 线性代数 扬州大学数学科学学院.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第二章 行列式 行列式的定义与性质 行列式的计算 Cramer 法则 解线性方程组的消元法 消去法的应用.
第三章 函数逼近 — 最佳平方逼近.
分式的乘除.
《高等数学》(理学) 常数项级数的概念 袁安锋
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第二章 行列式 第一节 二阶、三阶行列式.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三章 导数与微分 习 题 课 主要内容 典型例题.
余角、补角.
第二章 矩阵(matrix) 第8次课.
元素替换法 ——行列式按行(列)展开(推论)
!!! 请记住:矩阵是否等价只须看矩阵的秩是否相同。
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 行 列 式 在初等数学中,我们用代入消元法或加减消元法求解 二元和三元线性方程组,可以看出,线性方程组的解完
第一章 函数与极限.
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
数列.
Partial Differential Equations §2 Separation of variables
6.4不等式的解法举例(1) 2019年4月17日星期三.
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时7分 / 45.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
第一章 行列式 Determinant.
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
12.3.2运用公式法 —完全平方公式.
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
2019/5/20 第三节 高阶导数 1.
§2 方阵的特征值与特征向量.
2.3.运用公式法 1 —平方差公式.
第五节 线性方程组有解判别定理 一、线性方程组的向量表示形式 二、线性方程组有解判别定理 三、一般线性方程组的解法 四、线性方程组的求解步骤.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
一元一次方程的解法(-).
Presentation transcript:

第#讲

1 全排列 把 个不同的元素排成一列,叫做这 个元 素的全排列(或排列). 个不同的元素的所有排列的种数用 表示, 且 . 1 全排列   把 个不同的元素排成一列,叫做这 个元 素的全排列(或排列).    个不同的元素的所有排列的种数用 表示, 且   . 2019/4/24

2 逆序数 在一个排列 中,若数 , 则称这两个数组成一个逆序. 一个排列中所有逆序的总数称为此排列的逆 序数. 2 逆序数   在一个排列 中,若数 , 则称这两个数组成一个逆序.   一个排列中所有逆序的总数称为此排列的逆 序数.   逆序数为奇数的排列称为奇排列,逆序数为 偶数的排列称为偶排列. 2019/4/24

3 计算排列逆序数的方法 方法1 分别计算出排在 前面比它大的 数码之和,即分别算出 这 个元素 的逆序数,这 个元素的逆序数之总和即为所求 3 计算排列逆序数的方法 方法1   分别计算出排在 前面比它大的 数码之和,即分别算出 这 个元素 的逆序数,这  个元素的逆序数之总和即为所求 排列的逆序数. 方法2   分别计算出排列中每个元素前面比它大的数 码个数之和,即算出排列中每个元素的逆序数, 每个元素的逆序数之总和即为所求排列的逆序数. 2019/4/24

4 对 换 定义 在排列中,将任意两个元素对调,其余元素不动,称为一次对换.将相邻两个元素对调,叫做相邻对换. 定理 4 对 换 定义    在排列中,将任意两个元素对调,其余元素不动,称为一次对换.将相邻两个元素对调,叫做相邻对换. 定理    一个排列中的任意两个元素对换,排列改 变奇偶性. 推论 奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数. 2019/4/24

5 n阶行列式的定义 2019/4/24

2019/4/24

6 n阶行列式的性质 2019/4/24

2019/4/24

7 行列式按行(列)展开 1)余子式与代数余子式 2019/4/24

2)关于代数余子式的重要性质 2019/4/24

8 克拉默法则 2019/4/24

克拉默法则的理论价值 定理 定理 2019/4/24

定理 定理 2019/4/24

典 型 例 题 一、计算排列的逆序数 二、计算(证明)行列式 三、克拉默法则 2019/4/24

一、计算排列的逆序数 例1 解   分别算出排列中每个元素前面比它大的数码之 和,即算出排列中每个元素的逆序数. 2019/4/24

2019/4/24

于是排列的逆序数为 当 为偶数时,排列为偶排列, 当 为奇数时,排列为奇排列. 2019/4/24

二、计算(证明)行列式 1 用定义计算(证明) 例2 用行列式定义计算 2019/4/24

解 2019/4/24

顺序排列,讨论列标的所有可能取到的值,并注 意每一项的符号,这是用定义计算行列式的一般 方法.   评注 本例是从一般项入手,将行标按标准 顺序排列,讨论列标的所有可能取到的值,并注 意每一项的符号,这是用定义计算行列式的一般 方法. 注意 2019/4/24

例3 设 2019/4/24

证明 由行列式的定义有 2019/4/24

点,一是两个行列式有完全相同的项,二是每一 项所带的符号相同.这也是用定义证明两个行列 式相等的常用方法.   评注 本题证明两个行列式相等,即证明两 点,一是两个行列式有完全相同的项,二是每一 项所带的符号相同.这也是用定义证明两个行列 式相等的常用方法. 2019/4/24

蒙行列式的特点,将所给行列式化为范德蒙行列 式,然后根据范德蒙行列式计算出结果。 2 利用范德蒙行列式计算   利用范德蒙行列式计算行列式,应根据范德 蒙行列式的特点,将所给行列式化为范德蒙行列 式,然后根据范德蒙行列式计算出结果。 例4 计算 2019/4/24

解 2019/4/24

上面等式右端行列式为n阶范德蒙行列式,由 范德蒙行列式知 2019/4/24

素的不同方幂,而其方幂次数或其排列与范德蒙 行列式不完全相同,需要利用行列式的性质(如 提取公因子、调换各行(列)的次序等)将此行   评注 本题所给行列式各行(列)都是某元 素的不同方幂,而其方幂次数或其排列与范德蒙 行列式不完全相同,需要利用行列式的性质(如 提取公因子、调换各行(列)的次序等)将此行 列式化成范德蒙行列式. 2019/4/24

3 用化三角形行列式计算 例5 计算 2019/4/24

解 2019/4/24

提取第一列的公因子,得 2019/4/24

2019/4/24

的方法,逐步将所给行列式化为三角形行列式. 化零时一般尽量选含有1的行(列)及含零较多 的行(列);若没有1,则可适当选取便于化零   评注 本题利用行列式的性质,采用“化零” 的方法,逐步将所给行列式化为三角形行列式. 化零时一般尽量选含有1的行(列)及含零较多 的行(列);若没有1,则可适当选取便于化零 的数,或利用行列式性质将某行(列)中的某数 化为1;若所给行列式中元素间具有某些特点,则 应充分利用这些特点,应用行列式性质,以达到 化为三角形行列式之目的. 2019/4/24

4 用降阶法计算 例6 计算 解 2019/4/24

2019/4/24

2019/4/24

2019/4/24

式的某行(列)化成只含有一个非零元素,然后 按此行(列)展开,每展开一次,行列式的阶数 可降低 1阶,如此继续进行,直到行列式能直接   评注 本题是利用行列式的性质将所给行列 式的某行(列)化成只含有一个非零元素,然后 按此行(列)展开,每展开一次,行列式的阶数 可降低 1阶,如此继续进行,直到行列式能直接 计算出来为止(一般展开成二阶行列式).这种 方法对阶数不高的数字行列式比较适用. 2019/4/24

6 用递推法计算 例8 计算 解 2019/4/24

2019/4/24

2019/4/24

由此递推,得 如此继续下去,可得 2019/4/24

2019/4/24

评注 2019/4/24

7 用数学归纳法 例9 证明 2019/4/24

证 对阶数n用数学归纳法 2019/4/24

2019/4/24

评注 2019/4/24

以有多种计算方法;有的行列式计算需要几种方 法综合应用.在计算时,首先要仔细考察行列式 在构造上的特点,利用行列式的性质对它进行变 小结   计算行列式的方法比较灵活,同一行列式可 以有多种计算方法;有的行列式计算需要几种方 法综合应用.在计算时,首先要仔细考察行列式 在构造上的特点,利用行列式的性质对它进行变 换后,再考察它是否能用常用的几种方法. 2019/4/24

三、克拉默法则 当线性方程组方程个数与未知数个数相等、 且系数行列式不等于零时,可用克莱姆法则.为   当线性方程组方程个数与未知数个数相等、 且系数行列式不等于零时,可用克莱姆法则.为 了避免在计算中出现分数,可对有的方程乘以适 当整数,把原方程组变成系数及常数项都是整数 的线性方程组后再求解. 2019/4/24

解 设所求的二次多项式为 由题意得 2019/4/24

由克莱姆法则,得 于是,所求的多项式为 2019/4/24

证 2019/4/24

2019/4/24

2019/4/24

2019/4/24

例12 有甲、乙、丙三种化肥,甲种化肥每千 克含氮70克,磷8克,钾2克;乙种化肥每千克含 例12 有甲、乙、丙三种化肥,甲种化肥每千 克含氮70克,磷8克,钾2克;乙种化肥每千克含 氮64克,磷10克,钾0.6克;丙种化肥每千克含氮 70克,磷5克,钾1.4克.若把此三种化肥混合,要 求总重量23千克且含磷149克,钾30克,问三种化 肥各需多少千克? 解 2019/4/24

2019/4/24

例13 2019/4/24

解 2019/4/24

2019/4/24

2019/4/24