第六章 数值积分与数值微分.

Slides:



Advertisements
Similar presentations
数值分析 第五节 数值微分 在实际问题中,往往会遇到某函数 f(x) 是用表格 表示的, 用通常的导数定义无法求导, 因此要寻求其他 方法近似求导。常用的数值微分方法有 : 一. 运用差商求数值微分 二.运用插值函数求数值微分 三. 运用样条插值函数求数值微分 四. 运用数值积分求数值微分.
Advertisements

第六章 数值微分 6.1 插值型数值微分公式 6.2 插值型数值积分. 6.1 插值型数值微分公式 当 x 为插值节点 时,上式简化为 故一般限于对节点上的导数值采用插值多项式的相应导数 值进行近似计算,以便估计误差。 一般地 这类公式称为插值型数值微分公式。
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第 8 章 数值积分与数值微分 8.1 Newton-Cotes 公式 Newton-Cotes 公式 8.2 复化求积公式 复化求积公式 8.3 自适应步长求积方法 自适应步长求积方法 8.4 Gauss 求积方法 Gauss 求积方法 8.5 特殊函数的积分 特殊函数的积分 8.6 数值积分的.
第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1
1 、不定积分的概念与性质 2 、不定积分的计算 2.1 第一换元积分法 2.2 分步积分法 3 、定积分的概念与计算 第六章 一元函数积分学.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第 5 章 数值积分 §1 插值型求积公式 §2 复化求积公式 §3 龙贝格 (Romberg) 求积方法 §4§4 数值微分 数值微分.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
1 4.5 高斯求积公式 一般理论 求积公式 含有 个待定参数 当 为等距节点时得到的插值型求积公式其代数精度至 少为 次. 如果适当选取 有可能使求积公式 具有 次代数精度,这类求积公式称为高斯 (Gauss) 求积公式.
计算机数学基础(下) --数值分析 教师:孙继荣 电话: 028 -
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
1 、牛顿 - 莱布尼兹公式 另外若给出的函数 f(x) 是数据表,也不好求函数的积分。 计算定积分的方法: 但是求函数 f(x) 的原函数 F(x) 不一定比计算积分容易, 例如函数 找不到用初等函数表示的原函数。 一、数值求积的基本思想 实验 4 数值积分与微分 主讲人:魏志强.
理学院 张立杰 《数值分析》第四讲 数值积分与微分. §4.1 引言 第四章:数值积分与数值微分 1 、积分的概念 设 任取 做 如果 存在, 则称 可积,极限值称为函数 在区间 [a,b] 上的 定积分,记为 : Riemann 积分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第3章 积分的数值方法 3.1 概述 3.2 梯形积分法 3.3 抛物积分法 3.4 龙贝格积分法 3.5 高斯求积.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二章 数值微分和数值积分.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
成才之路 · 数学 人教A版 · 选修2-2 路漫漫其修远兮 吾将上下而求索.
9.1 数值积分基本方法 9.2 梯形积分 9.3 Simpson积分 9.4 Newton-Cotes积分 9.5 Romberg积分
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第3.4节 几乎连续函数与积分 第3.5节 微积分基本定理
第四章 数值积分与数值微分 — 基本概念 — Newton-Cotes 公式.
第4章 数值积分与数值微分.
Chapter 7 数值积分与数值微分.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
计算机数学基础(下) 第5编 数值分析 第14章 常微分方程的数值解法.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
全 微 分 欧阳顺湘 北京师范大学珠海分校
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第四章 数值积分与数值微分 — 复合求积公式 — Romberg 算法.
计算机数学基础(下) 第5编 数值分析 第12章 数值积分与微分(续).
高等数学 西华大学应用数学系朱雯.
第二章 函数 插值 — 分段低次插值.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
数学实验3 插值与数值积分(2).
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第六章 数值积分与数值微分

§1 数值积分问题的提出 定积分计算: 牛顿莱布尼兹公式: 此时,f(x)在区间【a,b】上连续,F(x)为f(x)的原函数。 插值法满足p(xj)=f(xj)(j=0,1,…,n) 原始数据点误差仍保留,插值函数复杂。 转换思路:不一定要求给定点完全插值,而考虑总体趋势上逼近原函数特性,使二者之间的偏差按某种方法度量达到最小。 好处:尽可能减少测试误差影响,关系函数尽量简化。

困难:

思路:避免找原函数,设想积分值最好能由被积函数的值直接决定。 积分中值定理: (1)左矩形公式: (2)中矩形公式: (3)右矩形公式:

定积分定义:将【a,b】作分割a=x0<x1<…<xn=b,记 ,则 (4)近似计算公式: 一般数值求积公式: 求积节点:xk 求积系数:Ak

机械求积法:直接应用被积函数f(x)在一些节点上的函数值的线性组合得出积分的近似值。 机械求积法分类:插值型和外推型

机械求积法几何意义:矩形面积近似代替曲边梯形面积。

§2 插值型求积公式 2.1 插值求积公式

2.2 梯形公式、辛卜生公式和柯特斯公式 插值求积公式的特殊情形/常用情形,即分别取n=1,2,4的情形。

几何意义:两矩形面积和近似代替原曲边梯形面积。 (1)梯形公式T(f) : 几何意义:两矩形面积和近似代替原曲边梯形面积。 a b a+b 2

(2)辛卜生公式(Simpson)S(f) :

几何意义:三矩形面积和近似代替原曲边梯形面积。

(2)柯特斯公式(Cotes)C(f) :

几何意义:五矩形面积和近似代替原曲边梯形面积。

2.3 插值型求积公式的截断误差与代数精度

定理6.1 求积公式 至少具有n次代数精度的充分必要条件是该公式是插值型的,即

2.3 梯形公式、辛卜生公式和柯特斯公式的截断误差

§3 复化求积公式

复化的出发点:减少求积区间长度对误差的影响,提高求积结果的精度。 复化的办法:将积分区间分为若干个小区间,每个小区间上应用基本求积公式计算,再将个小区间上的求积结果累加。

3.1 复化梯形公式

3.2 复化辛卜生公式

3.3 复化柯特斯公式

3.4 复化求积公式的阶 结论:复化梯形公式、复化辛卜生公式和复化柯特斯公式分别是二阶、四阶和六阶收敛的。

3.5 步长的自动选择 问题:加密节点可提高精度,但求积之前必须给出合适的步长,太大满足不了精度,太小增加不必要的计算,如何选择步长? 办法:计算机自动选择,加逐次二分,反复求积,直至最后两次积分值的差满足精度要求为止。 理由:

§4 龙贝格求积公式 出发点:既发扬梯形公式的计算简单性,又显著提高其代数精度。

复化梯形公式的递推计算:

龙贝格求积过程的列表描述:

作业 P158习题6:第9题