函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数. 二、 连续与间断 一、 函数 三、 极限 函数与极限.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
Yunnan University Chapt 5. 微分学基本定理及其应用 导 数导 数 函数性质 中值定理 §1. 中值定理 §2. 泰勒公式 §3. 函数的升降、凸性与极值 §4. 平面曲线的曲率 §5. 待定型.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
第三章 导数与微分 第二节 求导法则 第三节 微分及其在近似计算中的应用 微分及其在近似计算中的应用 第一节 导数的概念.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第二讲:连续、导数、微分 1 函数的连续性 2 导数的概念 3 函数微分 (1) (2) (3)
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
第五节 积分表的使用 一、关于积分表的说明 二、例题 结束. ( 1 )常用积分公式汇集成的表称为积分表. ( 2 )积分表是按照被积函数的类型来排列的. ( 4 )积分表见《高等数学》(四版)上册 (同济大学数学教研室主编)第 452 页. ( 3 )求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.
《高等数学》(理学) 常数项级数的概念 袁安锋
第三章 习题课 中值定理及导数的应用 一、 微分中值定理及其应用 二、 导数应用 机动 目录 上页 下页 返回 结束.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第一章 函数与极限.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第六章 微分中值定理及其应用.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
第一章 导数与微分 1.1 函数及其性质 1.2 极限 1.3 极限的性质与运算法则 1.4 两个重要极限 1.5 函数的连续性
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 第一节 导数的概念 第二节 求导法则 第三节 微分及其在近似计算中的应用.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第十一章 无穷级数 返回.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
高等数学 西华大学应用数学系朱雯.
一、无穷小的比较 例如, 观察各极限 不可比. 极限不同, 反映了趋向于零的“快慢”程度不同..
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第六模块 无穷级数 第五节 函数的幂级数展开 一、 麦克劳林 (Maclaurin) 公式 二、 直接展开法 三、 间接展开法.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数

二、 连续与间断 一、 函数 三、 极限 函数与极限

1. 函数的概念 2. 函数的特性 有界性, 单调性, 奇偶性, 周期性 3. 反函数 4. 复合函数 5. 初等函数 一、 函数

二、 连续与间断 1. 函数连续的等价形式 有

有界定理 ; 最值定理 ; 零点定理 ; 介值定理. 3. 闭区间上连续函数的性质 2. 函数间断点 第一类间断点 第二类间断点 可去间断点 跳跃间断点

三、 极限 1. 极限定义的等价形式 ( 以 为例 ) ( 即 为无穷小 ) 有

2. 极限存在准则及极限运算法则 无穷小的性质 ; 无穷小的比较 ; 常用等价无穷小 : ~ ~ ~ ~ ~ ~ ~ ~ ~ 3. 无穷小

4. 两个重要极限 6. 判断极限不存在的方法 5. 求极限的基本方法

重要极限

导数与微分 一、 导数和微分的概念及应用 二、 导数和微分的求法

一、 导数和微分的概念及应用 导数 : 当时, 为右导数 当时, 为左导数 微分 : 关系 : 可导可微

应用 : 利用导数定义解决的问题 (C) 用导数定义求极限 (a) 求分段函数在分界点处的导数, 及某些特殊函数在特殊点处的导数 ; (b) 由导数定义证明一些命题. 若 且 存在, 求 设 在 处连续, 且 求

二、 导数和微分的求法 1. 正确使用导数及微分公式和法则 2. 熟练掌握求导方法和技巧 (1) 求分段函数的导数 注意讨论界点处左右导数是否存在和相等 (2) 隐函数求导法 ; 对数求导法 (3) 参数方程求导法 (4) 复合函数求导法 (5) 高阶导数的求法

中值定理及导数的应用 二、 导数应用 一、 微分中值定理及其应用

一、 微分中值定理及其应用 1. 微分中值定理及其相互关系 罗尔定理 拉格朗日中值定理 柯西中值定理 泰勒中值定理 积分中值定理

2. 微分中值定理的主要应用 (1) 证明恒等式或不等式 (2) 证明有关中值问题的结论 一般用拉格朗日中值定理证明恒等式; 证明不等式经常用单调性(或凹凸性) 首选罗尔中值,构造函数 若已知条件中含高阶导数, 有时也可考虑对导数用中值定理. 多考虑用泰勒公式,

二、 导数应用 1. 研究函数的性态 : 增减, 极值, 凹凸, 拐点, 渐近线, 曲率 2. 解决最值问题 目标函数的建立与简化 最值的判别问题 3. 其他应用 : 求不定式极限 ; 相关变化率 ; 证明不等式 ; 研究方程实根等.

不定积分与定积分 二、 求不定积分与定积分的基本方法 三、几种特殊类型的积分 一、 不定积分与定积分的概念 五、定积分的应用 四、反常积分

一、 不定积分与定积分的概念 在区间 I 上的原函数全体称为 上的不定积分, 记作 定积分: 不定积分: 定积分的性质

二、 求不定积分的基本方法 1. 直接积分法 通过简单变形, 利用基本积分公式和运算法则求 不定积分的方法. 2. 换元积分法 第一类换元法 第二类换元法 ( 代换 : ) 3. 分部积分法

联系不定积分与定积分是通过 变限定积分得到的 4. 与变限积分有关的问题 5. 定积分计算方法 换元法 分部积分法 换元必换限 牛顿 - 莱布尼兹公式 而牛顿 - 莱布尼兹公式是通过引进

三、几种特殊类型的积分 1. 有理函数的积分 2. 有理三角函数的积分 3. 简单无理函数的积分 不定积分 定积分 2. 若 则 1. 偶倍奇零

3. 周期函数 4.

四、反常积分 1. 无穷限的反常积分 2. 无界函数的反常积分 3. 反常积分的计算 4. 两个常用结论

五、定积分的应用 1. 几何方面 : 面积、体积、弧长、 2. 物理方面 : 作功、 静压力 侧面积 质量、

级数 数项级数 函数项级数

数项级数  级数收敛、发散  收敛级数的性质  正项级数的敛散性  交错级数的敛散性  一般项级数的敛散性

函数项级数 ( 1 )幂级数的收敛半径、 收敛区间、收敛域 ( 2 )幂级数的基本性质 幂级数的代数运算性质 幂级数的解析性质 ( 3 )幂级数的和函数计算 ( 4 ) 函数展开成幂级数( Taylor 级数) 幂级数