第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
1 、不定积分的概念与性质 2 、不定积分的计算 2.1 第一换元积分法 2.2 分步积分法 3 、定积分的概念与计算 第六章 一元函数积分学.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
第五章 一元函数积分学 第一节 不定积分的概念与性质 第一节 不定积分的概念与性质 第二节 不定积分法 第二节 不定积分法 第三节 定积分的概念与性质 第三节 定积分的概念与性质 第四节 牛顿 - 莱布尼兹公式 第四节 牛顿 - 莱布尼兹公式 第五节 定积分的换元法与分部积分法 第五节 定积分的换元法与分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
第三节 微积分基本公式 一、引例 二、概念和公式的引出 三、基本积分表 四、微积分基本公式 五、案例.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第一节 定积分的概念与性质 一、引入定积分概念的实例 二、定积分的概念 三、定积分的几何意义 四、定积分的性质.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第六章 微分与不定积分 第三节 不定积分.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
成才之路 · 数学 人教A版 · 选修2-2 路漫漫其修远兮 吾将上下而求索.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第二节 微积分基本公式 一, 引例 前面我们已经研究了定积分的定义,利用定义求定积分很不方便 本讲介绍计前算定积分的方法。
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第五章 导数和微分 §1 导数的概念 §2 求导法则 §3 参变量函数的导数 §4 高阶导数 §5 微分.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
2019/5/20 第三节 高阶导数 1.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第四章 定积分及其应用 4.3 定积分的概念与性质 4.4.1 微积分基本公式 4.4.2 定积分的换元积分法与分部积分法 4.5 广义积分 经济数学 第四章 定积分及其应用 4.3 定积分的概念与性质 4.4.1 微积分基本公式 4.4.2 定积分的换元积分法与分部积分法 4.5 广义积分 4.6 定积分的应用 目录

经济数学 4.4.1 微积分基本公式 * 4.4.1,1变上限积分函数 4.4.1,2 微积分基本公式 主要内容 首页 上页 下页

经济数学 4.4.1,1 变上限积分函数   设函数    定义在 上,x为区间上的任意一点,定积分 表示的是图中阴影部分的面积.随着积分上限x在区间内变化,定积分都有惟一确定的值与之相对应,故它 是x的函数,称它为变上限积分函数,记作   ,即   首页 上页 下页 5.2 微积分基本公式

4.4.1,1 变上限积分函数 如果函数 在区间 上连续,则函数 定理1 在区间 上可导,且它的导数就是 ,即 经济数学 4.4.1,1 变上限积分函数   如果函数  在区间  上连续,则函数 在区间  上可导,且它的导数就是  ,即 定理1 上定理表明,  是连续函数  的一个原函数,它 揭示了定积分与被积函数的原函数之间的关系 首页 上页 下页 5.2 微积分基本公式

经济数学 4.4.1,1 变上限积分函数 例1 设         ,求 解: 根据定理1,可得     例2 设        ,求 首页 上页 下页 5.2 微积分基本公式

4.4.1,2 微积分基本公式 定理2 设函数 在 上连续,且 是 在 上的一个原函数,则 经济数学 4.4.1,2 微积分基本公式 定理2   设函数  在  上连续,且  是  在 上的一个原函数,则 上式称为牛顿(Newton)—莱布尼茨(Leibniz)公式,也叫微积分基本公式. 首页 上页 下页 5.2 微积分基本公式

5.2.2 微积分基本公式 为书写方便,公式中的 通常记为 或 .因此上述公式可写成 或 经济数学 5.2 微积分基本公式 5.2.2 微积分基本公式   为书写方便,公式中的     通常记为    或    .因此上述公式可写成 或 因此求 在区间 上的定积分,只需求出 在区间 上的任一个原函数 ,并计算它在两端处点的函数值之差,即 首页 上页 下页

4.4.1,2 微积分基本公式 求定积分 例1 , 是 原函数,所以由牛顿——莱布尼茨公式有 的一个 解: 经济数学 5.2 微积分基本公式 5.2 微积分基本公式 4.4.1,2 微积分基本公式 求定积分 例1 , 是 原函数,所以由牛顿——莱布尼茨公式有 的一个 解: 首页 上页 下页

4.4.1,2 微积分基本公式 求定积分 例2 可利用定积分的性质将原积分分解为各个函数定积分的代数和. 解: 经济数学 首页 上页 下页 5.2 微积分基本公式

经济数学 4.4.1,2 微积分基本公式 求定积分 例3 解: 首页 上页 下页 5.2 微积分基本公式

4.4.1,2 微积分基本公式 求定积分 例4 解: 被积函数是分段函数 由积分区间的可加性,得 经济数学 5.2 微积分基本公式 首页   由积分区间的可加性,得 首页 上页 下页 5.2 微积分基本公式

经济数学 5.2 微积分基本公式 课堂练习 : 1.求定积分           . (答案:     ) 2.求定积分        . (答案:      ) 首页 上页 下页

小结 *1.变上限积分函数的概念. *2.变上限积分函数求导方法 . 3.利用牛顿-莱布尼兹公式计算定积分. 4.分段函数的定积分. 经济数学 小结 *1.变上限积分函数的概念. *2.变上限积分函数求导方法 . 3.利用牛顿-莱布尼兹公式计算定积分. 4.分段函数的定积分. 5.计算定积分的常用技巧 . 首页 上页 下页 5.2 微积分基本公式