复变函数 第7讲 本文件可从网址 http://math.vip.sina.com 上下载 (单击ppt讲义后选择‘复变函数'子目录)

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
第十二章 第二节 一元函数 y = f (x) 的微分 机动 目录 上页 下页 返回 结束 对二元函数的全增量是否也有类似这样的性质? 全微分.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第二章 复变函数的积分 重点 1、复变函数积分的概念、性质和计算方法; 2、单、复连通Cauchy定理(解析函数的基本定理)的应用;
第三章 函数逼近 — 最佳平方逼近.
第十章 第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的 等价条件 机动 目录 上页 下页 返回 结束.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
复变函数 第11讲 本文件可从网址 上下载.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
定积分习题课.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积 四、 小结.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
Math2-4 内容预告 授 课 内 容 取对数求导法 导数基本公式 高阶导数 同学们好 现在开始上课 Math2-4.
高等数学 西华大学应用数学系朱雯.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
作业 P158 习题 2 1(2)(4) (5). 2(1). 预习 P156— /5/2.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
函 数 连 续 的 概 念 淮南职业技术学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

复变函数 第7讲 本文件可从网址 http://math.vip.sina.com 上下载 (单击ppt讲义后选择‘复变函数'子目录)

本讲义还可以从 ftp://math.shekou.com 的"复变函数讲义"子目录 下载

§4 原函数与不定积分

定理一 如果函数f(z)在单连通域B内处处解析, 则积分 与连接起点及终点的路线C无关.

由定理一可知, 解析函数在单连通域内的积分只与起点z0和终点z1有关, 如图所示, 我们有 B C2 B C1 z1 z2 C1 z1 z2 C2

固定z0, 让z1在B内变动, 令z1=z, 则积分 在B内确定了一个单值函数 对这个函数我们有 定理二 如果f(z)在单连通域B内处处解析, 则函数F(z)必为B内的一个解析函数, 并且 F '(z)=f(z).

[证] 从导数的定义出发来证. 设z为B内任意一点, 以z为中心作一含于B内的小圆K, 取|Dz|充分小使z+Dz在K内. 于是由(3. 4

于是有

则任给e>0, 存在d>0, 当|z-z|<d即|Dz|<d时, 总有 |f(z)-f(z)|<e, 因此

定义 如果函数j(z)在区域D内的导数等于f(z), 即j '(z)=f(z), 则称j(z)为f(z)在区域B内的原函数. f(z)的任何两个原函数相差一个常数. 设G(z)和H(z)是f(z)的两个原函数, 则 [G(z)-H(z)]'=G '(z)-H '(z)=f(z)-f(z)=0. 所以 G(z)-H(z)=c, c为任意常数.

因此, 如果函数f(z)在区域B内有一个原函数F(z), 则它就有无穷多个原函数, 而且具有一般表达式F(z)+c, c为任意常数 因此, 如果函数f(z)在区域B内有一个原函数F(z), 则它就有无穷多个原函数, 而且具有一般表达式F(z)+c, c为任意常数. 跟在微积分学中一样, 定义: f(z)的原函数的一般形式F(z)+c(其中c为任意常数.)为f(z)的不定积分, 记作

定理三 如果f(z)在单连通域B内处处解析, G(z)为f(z)的一个原函数, 则 这里z0, z1为域B内的两点. [证] 因为 也是f(z)的原函数, 所以

当z=z0时, 根据柯西-古萨基本定理, c=-G(z0) 有了原函数, 不定积分和积分计算公式(3.4.2), 复变函数的积分就可用微积分学中类似的方法去计算.

例1 求积分 的值 [解] 函数zcos z在全平面内解析, 容易求得它有一个原函数为zsin z+cos z. 所以

例2 试沿区域Im(z)0, Re(z)0内的圆弧|z|=1, 计算积分 [解] 函数 在所设区域内解析.

例2 续

§5 柯西积分公式

既然沿围绕z0的任何简单闭曲线积分值都相同. 则取以z0为中心, 半径为d的很小的圆周 |z-z0|=d(取其正向)作为积分曲线C 既然沿围绕z0的任何简单闭曲线积分值都相同. 则取以z0为中心, 半径为d的很小的圆周 |z-z0|=d(取其正向)作为积分曲线C. 由于f(z)的连续性, 在C上的函数f(z)的值将随着d的缩小而逐渐接近于它在圆心z0处的值, 从而使我们 猜想积分 的值也将随着d的缩小而接近于

其实两者是相等的, 即 我们有下面的定理. 定理(柯西积分公式) 如果f(z)在区域D内处处解析, C为D内的任何一条正向简单闭曲线, 它的内部完全含于D, z0为C内的任一点, 则

[证] 由于f(z)在z0连续, 任给e>0, 存在d(e)>0, 当|z-z0|<d时, |f(z)-f(z0)|<e. 设以z0为中心, R为半径的圆周K:|z-z0|=R全部在C的内部, 且R<d. D R z z0 C K

这表明不等式右端积分的模可以任意小, 只要R足够小就行了, 根据闭路变形原理, 该积分的值与R无关, 所以只有在对所有的R积分为值为零才有可能, 因此, 由(3.5.2)即得要证的(3.5.1)式.

(3.5.1)式称为积西积分公式. 如果C是圆周z=z0+Reiq, 则(3.5.1)式成为 即, 一个解析函数在圆心处的值等于它在圆周上的平均值.

例 求下列积分(沿圆周方向)的值: [解] 由(3.5.1)得

§6 解析函数的高阶导数 一个解析函数不仅有一阶导数, 而且有各高阶导数, 它的值也可用函数在边界上的值通过积分来表示. 这一点和实变函数完全不同. 一个实变函数在某一区间上可导, 它的导数在这区间上是否连续也不一定,更不要说它有高阶导数存在了.

定理 解析函数f(z)的导数仍为解析函数, 它的n阶导数为: 其中C为在函数f(z)的解析区域D内围绕z0的任何一条正向简单曲线, 而且它的内部全含于D.

[证] 设z0为D内任意一点, 先证n=1的情形, 即 因此就是要证

按柯西积分公式有

因此

现要证当Dz0时I0, 而 C z0 D d

C z0 D d f(z)在C上连续, 则有界, 设界为M, 则在C上有|f(z)|M. d为z0到C上各点的最短距离, 则取|Dz|适当地小使其满足|Dz|<d/2,

因此, L是C的长度

这就证得了当Dz0时,I0, 也就证得了 再利用同样的方法去求极限: 这里已经证明了一个解析函数的导数仍然是解析函数.

依此类推, 用数学归纳法可以证明: 此公式可以这样记忆: 把柯西积分公式(3.5.1)的两边对z0求导数, 右边求导在积分号下进行, 求导时把被积函数看作是z0的函数, 而把z看作常数. 高阶导数公式的作用, 不在于通过积分来求导, 而在于通过求导来求积分.

例1 求下列积分的值, 其中C为正向圆周: |z|=r>1. [解] 1) 函数 在C内的z=1处不解析, 但cospz在C内却是处处解析的. 根据(3.6.1)有

y C C1 i O x -i C2

O C1 C2 C i -i x y 根据复合闭路定理,

由(3.6.1)有

作业第一章第29题 设函数f(z)在z0连续且f(z0)0, 那末可找到z0的小邻域, 在这邻域内f(z0)0. w d e=A/2 A=|f(z0)| f(z) x y O u v f(z0) z0

证 设A=|f(z0)|, 令e = A/2, 则存在d>0使得当 |z-z0|<d时, 有|f(z)-f(z0)|<e, 则

作业 第三章习题 第99页 第7题第1),2),3),4) 第8题第1),2),3),4)