第一章 函数与极限.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

1 函数的微分 微分的定义 微分的几何意义 基本初等函数 的微分公式与 微分的运算法则 微分在近似计算中的应用 微分的近似计算 误差估计 基本初等函数的微分公式 和、差、积、商的微分法则 复合函数的微分法则.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数. 二、 连续与间断 一、 函数 三、 极限 函数与极限.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
§3.1 导数引例 一、瞬时速度问题 一物体作直线变速运动,走过的距离 S 与时间 t 的关 系为 极限 存在, 该极限就是物体在.
第三章 导数与微分 第二节 求导法则 第三节 微分及其在近似计算中的应用 微分及其在近似计算中的应用 第一节 导数的概念.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
§1 导数的概念 §1 导数的概念 §2 求导法则 §2 求导法则 §3 参变量函数的导数 §3 参变量函数的导数 §4 高阶导数 §4 高阶导数 §5 微分§5 微分.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
第五节 积分表的使用 一、关于积分表的说明 二、例题 结束. ( 1 )常用积分公式汇集成的表称为积分表. ( 2 )积分表是按照被积函数的类型来排列的. ( 4 )积分表见《高等数学》(四版)上册 (同济大学数学教研室主编)第 452 页. ( 3 )求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第八章 不定积分.
第6章 不定积分 6.1不定积分的概念与基本积分公式 6.2换元积分法 6.3分部积分法 6.4几类特殊函数的不定积分.
第三章 导数与微分 习 题 课 主要内容 典型例题.
第一章 导数与微分 1.1 函数及其性质 1.2 极限 1.3 极限的性质与运算法则 1.4 两个重要极限 1.5 函数的连续性
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
习 题 课.
第三章 导数与微分 第一节 导数的概念 第二节 求导法则 第三节 微分及其在近似计算中的应用.
导数的基本运算.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
Math2-4 内容预告 授 课 内 容 取对数求导法 导数基本公式 高阶导数 同学们好 现在开始上课 Math2-4.
第四模块 函数的积分学 第三节 第二类换元积分法.
第一章 函数与极限.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
Presentation transcript:

第一章 函数与极限

主要内容 (一)函数的定义 (二)极限的概念 (三)连续的概念

1、极限定义 2、无穷小与无穷大 无穷小与无穷大的关系 在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大.

3、求极限的常用方法 a.多项式与分式函数代入法求极限; b.消去零因子法求极限; c.利用无穷小运算性质求极限; d.利用左右极限求分段函数极限; e.利用两个重要极限求极限. f.利用等价无穷小求极限

4、单侧连续 5、连续的充要条件

第二章 导数与微分

关 系 基本公式 导 数 微 分 高阶导数 求 导 法 则

1、基本导数公式 (常数和基本初等函数的导数公式)

2、求导法则 (1) 函数的和、差、积、商的求导法则 (2) 反函数的求导法则

(3) 复合函数的求导法则 (4) 对数求导法 先在方程两边取对数,然后利用隐函数的求导方法求出导数. 适用范围:

(5) 隐函数求导法则 用复合函数求导法则直接对方程两边求导. (6) 参变量函数的求导法则

3、高阶导数 (二阶和二阶以上的导数统称为高阶导数) 记作 二阶导数的导数称为三阶导数,

4、导数与微分的关系 定理 5、 微分的求法 求法:计算函数的导数,乘以自变量的微分.

第三章 中值定理和导数的应用

主要内容 洛必达法则 单调性,极值与最值, 凹凸性,拐点,函数 图形的描绘; 导数的应用

函数图形的描绘 利用函数特性描绘函数图形. 第一步 第二步

确定函数图形的水平、铅直渐近线以及其他变化趋势; 第三步 确定函数图形的水平、铅直渐近线以及其他变化趋势; 第四步 第五步

第四章 不定积分

一、主要内容 原 函 数 不 定 积 分 积分法 选 择 u 有 效 方 法 基 本 积 分 表 分部 积分法 直接 积分法 第一换元法 原 函 数 不 定 积 分 选 择 u 有 效 方 法 基 本 积 分 表 分部 积分法 积分法 直接 积分法 第一换元法 第二换元法 几种特殊类型 函数的积分

1、基本积分表 是常数)

2、直接积分法 由定义直接利用基本积分表与积分的性质求不定积分的方法. 3、第一类换元法 第一类换元公式(凑微分法)

常见类型:

4、第二类换元法 第二类换元公式

常用代换:

5、分部积分法 6.选择u的有效方法:LIATE选择法 分部积分公式 L----反三角函数; I----对数函数; A----幂函数;

简单无理函数的积分 讨论类型: 解决方法: 作代换去掉根号.

第五章 定积分及其应用

主要内容 问题1: 曲边梯形的面积 问题2: 变速直线运动的路程 定积分 存在定理 定积分 的应用 定积分的 计算法 牛顿-莱布尼茨公式

1、牛顿—莱布尼茨公式 定理2(原函数存在定理)

定理 3(微积分基本公式) 也可写成 牛顿—莱布尼茨公式

2、定积分的计算法 (1)换元法 换元公式 (2)分部积分法 分部积分公式

3、定积分应用的常用公式 (1) 平面图形的面积 直角坐标情形

极坐标情形

(2) 体积 x y o

平行截面面积为已知的立体的体积

(3) 平面曲线的弧长 A.曲线弧为 弧长 B.曲线弧为 弧长

第六章 微分方程

微分方程解题思路 分离变量法(可分离变量) 常数变易法(一阶线性方程) 特征方程法(二阶线性齐次) 待定系数法(二阶线性非齐次) 一阶方程 二阶方程 待定系数法(二阶线性非齐次)

1、一阶微分方程的解法 (1) 可分离变量的微分方程 分离变量法 解法 (2) 一阶线性微分方程 (常数变易法)

2、二阶常系数齐次线性方程解法 特征方程为

3、二阶常系数非齐次线性微分方程解法 二阶常系数非齐次线性方程 解法 待定系数法.