4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.

Slides:



Advertisements
Similar presentations
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
1 、不定积分的概念与性质 2 、不定积分的计算 2.1 第一换元积分法 2.2 分步积分法 3 、定积分的概念与计算 第六章 一元函数积分学.
换元积分法 一、第一类换元积分法 二、第二类换元积分法 一、第一类换元法 例1例1 原因在于被积函数 cos 2x 与公式 中的被 积函数不一样. 如果令 u=2x ,则 cos2x=cos u , d u=2dx , 从而 所以有 ? 分析.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第一节 定积分的概念与性质 一、引入定积分概念的实例 二、定积分的概念 三、定积分的几何意义 四、定积分的性质.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
成才之路 · 数学 人教A版 · 选修2-2 路漫漫其修远兮 吾将上下而求索.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第二节 微积分基本公式 一, 引例 前面我们已经研究了定积分的定义,利用定义求定积分很不方便 本讲介绍计前算定积分的方法。
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第三章 导数与微分 习 题 课 主要内容 典型例题.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
导数的基本运算.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
2019/5/20 第三节 高阶导数 1.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.

一、牛顿—莱布尼兹公式 1、微积分基本定理 2、牛顿——莱布尼兹公式

这种积分上限为变量的定积分称为变上限定积分。 1.微积分基本定理 设函数 f (x) 在 [a,b] 上连续,x∈ [a,b] ,则函数 f (x) 在 [a,b] 上可积。 以x为积分上限的定积分 显然它是x的函数, (如图), 与x相对应, 即 这种积分上限为变量的定积分称为变上限定积分。 x y b a O y=f(x) Φ(x)

变上限定积分所确定的函数是被积函数的原函数,即设 f (x) 在 [a,b] 上连续,x∈ [a,b] ,则 定理1 (微积分基本定理) 定理1告诉我们: (1)变上限定积分的导数等于被积函数,这表明变上限定积分是被积函数的原函数,这揭示了微分(或导数)与(变上限)定积分之间的内在联系,因而定理1称为微积分基本定理。 (2)定理1要求函数 f (x) 在 [a,b] 上连续,于是附带给出了原函数存在定理,即: 推论 某区间上连续函数在该区间上存在原函数。

例1 解 例2 解

例3 解 则这个变上限定积分是由 复合而成的, 按复合函数的求导法则,得

2. 牛顿—莱布尼兹公式 定理2 设 f (x) 在 [a,b] 上连续,且 F(x)是 f (x) 原函数,则 (﹡) 证 已知 F(x) 是 f (x) 在 [a,b] 上的一个原函数,有定理1知 也是 f (x) 的一个原函数,并且两个原函数相差一个常数,

公式(﹡)是著名的牛顿—莱布尼兹公式,常记作 有了牛顿—莱布尼兹公式,定积分的计算问题就归结为求被积函数的原函数在积分上、下限的函数值之差,从而巧妙地避开了求和式极限的艰难道路,为运用定积分计算普遍存在的总量问题找到较为简单的计算方法。 说明:

在计算定积分时,我们只要先求出被积函数的一个原函数 ,再求这个原函数在积分上、下限的函数值之差即可。 例4 求由抛物线 直线 x = 1和 x 轴围成的 曲边三角形的面积。 解 设所求曲边三角形的面积为 S ,则 例5 解

例6 解 若被积函数是分段函数,当分段点在积分区间内时,计算定积分要用定积分对区间的可加性(性质6)。例6的被积函数是绝对值函数,而绝对值函数是分段函数,且分段点x = 1在积分区间内,所以求积分时用了性质6。 说明:

例7 解 先用换元积分法求不定积分 取一个原函数 由牛顿—莱布尼兹公式,得 在本例求原函数时用到了不定积分的换元积分法。需消去新变量 t,还原为原积分变量 x,而后用牛顿—莱布尼兹公式。 注意:

二、定积分的换元积分法 依据N—L公式,求定积分是先求被积函数的一个原函数,再求原函数在上、下限处的函数值之差。这种方法遇到用换元积分法求原函数时,需将新变量还原为原来的积分变量,才能求原函数值之差。定积分的换元积分法是省略还原为原积分变量的步骤,而直接用新限来计算定积分的方法。 下面用新方法来计算例7 :

这样做需注意两点: 1、引入新函数 必须单调,使 t 从α变到β时, x 从 a 变到 b, 2、改变积分变量 时必须改变积分上、下限,简称换元必换限。 定理3(定积分的换元积分法) 设 (1)函数 f (x) 在以 a、b 为端点区间上连续, (2)函数 在以α、β为端点的区间上 单调,有连续导数, (3)当 t 从α变到β时, x 从 a 变到 b,

例8 求 解

三、定积分的分部积分法 设函数 u (x) 和 v (x) 在区间 [a, b] 上存在连续导数,则由 两端从 a 到 b 对 x 求定积分, 便得定积分的分部积分公式: 例9 求 解

例10 求 解 与求不定积分类似,在求定积分时也会遇到换元积分法和分部积分法综合应用的情况,要灵活掌握。 说明:

例11 计算 解 当 n > 1 时, 移项得: 上述公式称为递推公式。

例如 同样地依次进行下去,直到 的下标递减 到0或1为止。 于是 例如

四、小结 1、牛顿—莱布尼兹公式 2、定积分的换元积分法 应用定积分的换元积分法计算定积分时省略了将新积分变量还原为原积分变量的步骤,但要注意换元同时要换积分限. 3、定积分的分部积分法 定积分的分部积分法用于计算被积函数是两类不同类型函数乘积的定积分。并注意先积出来的先代值,可使后面的计算简便。

作业:习题4。5