第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积 四、 小结.

Slides:



Advertisements
Similar presentations
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第三节 一、格林公式 二、平面上曲线积分与路径无关的 等价条件 机动 目录 上页 下页 返回 结束 格林公式及其应用 第十一章 三、全微分方程.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
下页 返回上页 9.3 格林公式及其应用( 2 ). 下页 返回上页 二、曲线积分与路径无关的条件 三、二元函数的全微分求积 一、曲线积分与路径无关的定义 四、小结.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
第十二章 第二节 一元函数 y = f (x) 的微分 机动 目录 上页 下页 返回 结束 对二元函数的全增量是否也有类似这样的性质? 全微分.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
习题课六.
第三章 函数逼近 — 最佳平方逼近.
第六节 高斯公式 通量与散度 第十一章 Green 公式 Gauss 公式 一、高斯公式 *二、沿任意闭曲面的曲面积分为零的条件
第四节 重积分的应用 一、平面区域的面积 二、立体体积 三、曲面的面积 四、物体的质量 五、物体的质心 六、物体的转动惯量 七、物体的引力
第十章 第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的 等价条件 机动 目录 上页 下页 返回 结束.
常用逻辑用语 知识体系: 命题 常用逻辑性用语 充分条件、必要条件、充要条件 基本逻辑连结词 量词.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
复习 - 对坐标的曲线积分 1. 定义 2. 对坐标的曲线积分必须注意积分弧段的方向! L- 表示 L 的反向弧.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
定积分习题课.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
全 微 分 欧阳顺湘 北京师范大学珠海分校
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
9.1 圓的方程 圓方程的標準式.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
实数与向量的积.
第一章 直角坐標系 1-2 直角坐標.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
作业 P158 习题 2 1(2)(4) (5). 2(1). 预习 P156— /5/2.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第五模块 微分方程 第三节 二阶常系数线性微分方程 一、二阶线性微分方程解的结构 二、二阶常系数线性齐次微分方程.
第七节 第十一章 斯托克斯公式 *环流量与旋度 一、斯托克斯公式 *二、空间曲线积分与路径无关的条件 *三、环流量与旋度.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
§2 方阵的特征值与特征向量.
格林公式及其应用 姓名 学号 班级 兰浩 级数学与应用数学.
二重积分的换元 主讲人:汪凤贞.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
目标 重点 难点 从具体情境中抽象出抛物线的模型,掌握抛物线的定义、标准方程、几何图形,能够求出抛物线的方程,能够解决简单的实际问题.. 抛物线的定义和标准方程 难点 抛物线标准方程的推导过程.
Presentation transcript:

第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积 四、 小结

一、格林公式 单连通与复连通区域 设D为平面区域 如果D内任一闭曲线所围的部分都属于D 则称D为平面单连通区域 否则称为复连通区域 区域的边界曲线的方向 当观察者沿区域D的边界曲线L行走时 如果左手在区域D内 则行走方向是L的正向 单连通区域 复连通区域

定理1 设闭区域D由分段光滑的曲线L围成 函数P(x y)及Q(x y)在D上具有一阶连续偏导数 则有 ——格林公式 其中L是D的取正向的边界曲线 >>> 应注意的问题: 对复连通区域D 格林公式右端应包括沿区域D的全部边界的曲线积分 且边界的方向对区域D来说都是正向

格林公式: 用格林公式计算区域的面积 设区域D的边界曲线为L 则 提示 在格林公式中 令Py Qx 则有

格林公式: 用格林公式计算区域的面积 设区域D的边界曲线为L 则 例1 求椭圆xacosq ybsinq 所围成图形的面积A 解 设L是由椭圆曲线 则

格林公式: 用格林公式计算二重积分 为顶点的三角形闭区域 解 因此, 由格林公式有 提示:

格林公式: 用格林公式计算二重积分 为顶点的三角形闭区域 解 因此, 由格林公式有

格林公式: 用格林公式求闭曲线积分 例3 设L是任意一条分段光滑的闭曲线 证明 证 令P2xy Qx2 则 因此 由格林公式有

不经过原点的连续闭曲线 L的方向为逆时针方向 解 记L所围成的闭区域为D 当(0 0)D时 由格林公式得 提示 当x2y20时 有

不经过原点的连续闭曲线 L的方向为逆时针方向 解 记L所围成的闭区域为D 当(0 0)D时 在D内取一圆周l x2y2r2(r>0) 记L及l所围成的复连通区域为D1 应用格林公式得 其中l的方向取顺时针方向 于是

二、平面上曲线积分与路径无关的条件 曲线积分与路径无关 设G是一个开区域 P(x y)、Q(x y)在区域G内具有一阶 连续偏导数 与路径无关 否则说与路径有关 如果对于G内任意指定的两个点A、B以及G内从点A到点B的任意两条曲线L1、L2 等式

二、平面上曲线积分与路径无关的条件 曲线积分与路径无关 这是因为 设L1和L2是G内任意两条从点A到点B的曲线 则L1(L2-)是G内一条任意的闭曲线 而且有

二、平面上曲线积分与路径无关的条件 曲线积分与路径无关 定理2 (曲线积分与路径无关的判断方法)

应用定理2应注意的问题 (1)区域G是单连通区域 (2)函数P(x y)及Q(x y)在G内具有一阶连续偏导数 如果这两个条件之一不能满足 那么定理的结论不能保证成立 讨论 设L为一条无重点、分段光滑且不经过原点的连续闭曲 线 L的方向为逆时针方向 问 是否一定成立? 提示 >>>

物线yx2上从O(0 0)到B(1 1)的一段弧 解 这里P2xy Qx2 选择从O(0 0)到A(1 0)再到B(1 1)的折线作为积分路线

du(x y)=ux(x y)dxuy(x y)dy 三、二元函数的全微分求积 二元函数u(x y)的全微分为 du(x y)=ux(x y)dxuy(x y)dy 表达式P(x y)dxQ(x y)dy与函数的全微分有相同的结构但它未必就是某个函数的全微分 那么在什么条件下表达式P(x y)dxQ(x y)dy是某个二元函数u(x y)的全微分呢?当这样的二元函数存在时 怎样求出这个二元函数呢?

定理3 设函数P(x y)及Q(x y)在单连通域G内具有一阶连续偏导数 则P(x y)dxQ(x y)dy在G内为某一函数u(x y)的全微分的 充分必要条件是等式 在G内恒成立 >>> 原函数 如果函数u(x y)满足du(x y)=P(x y)dxQ(x y)dy 则函数u(x y)称为P(x y)dxQ(x y)dy的原函数.

求原函数的公式

半平面内是某个函数的全微分 并求出一个这样的函数 取积分路线为从A(1 0)到B(x 0)再到C(x y)的折线 则所求函数为 解 这里 因为P、Q在右半平面内具有一阶连续偏导数 且有 是某个函数的全微分

例7 验证 在整个xOy面内 xy2dxx2ydy是某个函数的全微分 并求出一个这样的函数 解 这里Pxy2 Qx2y 因为P、Q在整个xOy面内具有一阶连续偏导数 且有 所以在整个xOy面内 xy2dxx2ydy是某个函数的全微分 取积分路线为从O(0 0)到A(x 0)再到 B(x y)的折线 则所求函数为

四、小结 1.格林公式 2.平面上曲线积分与路径无关的条件 3.二元函数的全微分求积