问题1 设 问.

Slides:



Advertisements
Similar presentations
数值分析 第五节 数值微分 在实际问题中,往往会遇到某函数 f(x) 是用表格 表示的, 用通常的导数定义无法求导, 因此要寻求其他 方法近似求导。常用的数值微分方法有 : 一. 运用差商求数值微分 二.运用插值函数求数值微分 三. 运用样条插值函数求数值微分 四. 运用数值积分求数值微分.
Advertisements

第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量. 再例如, 既容易计算又是较好的近似值 问题 : 这个线性函数 ( 改变量的主要部分 ) 是否 所有函数的改变量都有 ? 它是什么 ? 如何求 ?
Yunnan University Chapt 5. 微分学基本定理及其应用 导 数导 数 函数性质 中值定理 §1. 中值定理 §2. 泰勒公式 §3. 函数的升降、凸性与极值 §4. 平面曲线的曲率 §5. 待定型.
第三章 微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 --- 变化率 --- 切线 斜率 --- 相对误差 微分 描述函数变化程度 --- 函数值的增量 --- 绝对误差 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Fermat.
第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
1 大学数学教研室 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
复习 1. 隐函数求导法则直接对方程两边求导 2. 对数求导法 : 适用于幂指函数及某些用连乘, 连除表示的函数 3. 参数方程求导法 极坐标方程求导 转化 成立的条件?
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
§1. 导数的概念 1. 什么是导数(值)?如何表示? 2. 导数的几何意义? 3. 函数可导与连续的关系?(了解) §2. 导数的基本运算法则 反函数的求导法则? §3. 导数的基本公式.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
第三章 函数逼近 — 最佳平方逼近.
一、利用导数作近似计算 1. 近似计算 是用计算方法得到一定精度的计算结果. y 于是 o x.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第六章 微分中值定理及其应用.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
全 微 分 欧阳顺湘 北京师范大学珠海分校
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
计算机数学基础 主讲老师: 邓辉文.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
§3 泰勒公式 多项式函数是最简单的函数.用多项 式来逼近一般的函数是近似计算的重 要内容,也是数学的研究课题之一.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
Partial Differential Equations §2 Separation of variables
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第六模块 无穷级数 第五节 函数的幂级数展开 一、 麦克劳林 (Maclaurin) 公式 二、 直接展开法 三、 间接展开法.
第三节 泰勒公式 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析 目的-用多项式近似表示函数.
第三节 泰勒 ( Taylor )公式 — 应用 一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用 第三章 理论分析
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
Presentation transcript:

问题1 设 问

问题1 设 问 答

问题1 设 问 答 问题2 在微分近似计算中, 在 点附近的近似公式是什么?

问题1 设 问 答 问题2 在微分近似计算中, 在 点附近的近似公式是什么? 答 几何意义?

优点: 1.结构简单 2.计算方便 y x 不足: 1.精度不高 2.不能估计误差

优点: y 1.结构简单 2.计算方便 不足: 1.精度不高 x 2.不能估计误差 不足: 1.精度不高 提问学生第一个式子的几何意义。教学目的:1。引导学生学习函数局部逼近的思想; 2。引导学生进行猜想;培养学生的创造性思维 2.不能估计误差

泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内首先提出了著名定理——泰勒定理,这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作马克劳林定理。1772年,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理。泰勒定理开创了有限差分理论,使任何单变量 函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者 。 泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要 。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

y x 提问学生第一个式子的几何意义。教学目的:1。引导学生学习函数局部逼近的思想; 2。引导学生进行猜想;培养学生的创造性思维

应满足的条件 1.在 点相交 近似程度越来越好 2.有相同的切线 3.有相同的弯曲方向 请学生猜想多项式应满足的条件 …… ……

(3) 当 时 定理1 (皮亚诺型Taylor定理) 设 在 处有 阶导数,则 设 在 处有 阶导数,则 说明: (1)皮亚诺(Peano)型余项 阶Taylor 公式 (2)定性结论 (3) 当 时 的性质 分析: 在 点 阶可导 (2) 只需证

( 在 与 之间). 定理2(拉格朗日型Taylor定理) 如果函数 在含有 的某个开区间 内具有直到 阶的导数,则当 在 内时, 可以表示为 的一个 次多项式与一个余项 之和: ( 在 与 之间). 其中

说明: (1)Lagrange型余项的 阶 Taylor公式 (2) 既是定量的,又是定性的 估计误差:如果当 时, 有 ,则 估计精度: (3)麦克劳林(Maclaurin)公式

常见函数的麦克劳林(Maclaurin)公式

数学试验

数学试验

数学试验

数学试验

思考题: 设 在包含 的区间 内有任意阶导 数,那么Taylor定理的结论会有怎样的改变?