连续小波变换.

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
1.2 信号的描述和分类.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
第三章 函数逼近 — 最佳平方逼近.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
全 微 分 欧阳顺湘 北京师范大学珠海分校
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
第一章 函数与极限.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
光学信息技术原理及应用 (五) 总结与习题.
函 数 连 续 的 概 念 淮南职业技术学院.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
小波及连续小波变换 常用的基本小波 时频分析 连续小波变换的计算 小波变换的分类
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
§2 方阵的特征值与特征向量.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
信号发生电路 -非正弦波发生电路.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
三角 三角 三角 函数 余弦函数的图象和性质.
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
Presentation transcript:

连续小波变换

连续小波变换 连续小波变换是信号时-频分析的另一种重要工具。它的时频窗在低频时自动变宽,而在高频时自动变窄,具有自动变焦作用。结果,在很暂短的高频现象上,小波变换能比窗口Fourier变换更好地”移近”观察。 对于小波函数ψ(t) ,函数 的连续小波变换为 也常记为 上面用到了

小波变换的计算 注意第2讲中函数 的卷枳定义 记 ,连续小波变换可写为卷积 其中 证明 事实上,由卷积的定义,得 再注意 ,即可得证。

小波变换性质 定理 设ψ是小波而 ,则 (线性) (平移) 其中 是平移算子 。 (3)(伸缩) 其中 是伸缩算子 。

小波变换性质(续) (4) (对称性) (5)(奇偶性) 其中P是反射算子(奇偶算子) (6)(反线性性) (7)(小波平移) (8)(小波伸缩)

小波重构 如果ψ是一个基小波,则有Parseval恒等 式 以及重构公式 上面讨a的积分是从负无穷到正无穷的。由于a代表频率的变化,这时有正频率也有负频率。在信号分析中,我们只考虑正频率。

小波重构(续) 由伸缩因子a 对频率的影响可以看到,频率变量ω是膨账参数a 的倒数的正的常数倍,例如,写为 ,其中 是 的中心(假定 总是正的),这样,我们只需考虑a的正值。 在连续小波变换重构f 中,现在只允许使用值 。这时,对小波ψ还需加上进一步的限制

小波重构(续2) 定理 令ψ是满足上述条件(1)的基小波,那么 对所有 成立。进而,对于任何 和在f 的连续点 ,有 定理 令ψ是满足上述条件(1)的基小波,那么 对所有 成立。进而,对于任何 和在f 的连续点 ,有 附注 定理的证明完全类似于不限制a的情形,只需注意

不同小波的重构公式 上面重构公式与Parseval恒等式要求f,g 的小波变换都是对同一小波进行的。如使用不同小波进行变换,容许性条件变为 重构公式是 这时要对 加上较多条件: , 是可微的,且 并且

小波生成方法 Gauss小波和Mexic帽小波是Gauss函数的一、二阶导数生成的。这样由光滑函数的导数得到小波函数的作法对一般情形也成立。设θ(t)是光滑函数,满足 则 就一定是小波函数,因为 如果ψ(t)是满足容许性条件的基小波,则由下述定理可以构造更多的基小波。 定理 如果ψ是一个基小波, 是一个有界可积函数,那么卷积 是基小波。

小波的光滑性与局部化性质 当对小波附加了容许性条件后,应用中有时还需要小波满足其它的性质,例如,要求小波是n次连续可微的或是无限可微的。用卷积方法可以增加小波的光滑性。例如ψ是Haar小波φ是Haar(尺度)函数,如果ψ与φ微n+1次卷积,则 是n次连续可微的。上个例子给出的小波是无限可微的,Mexic帽小波也是无限可微的。 除了小波的光滑性外,小波还需要描述的另一个性质是局部化性质。我们想ψ在时间与频率方面都有好的局部化。

局部化性质与消失矩 对于时域局部化,ψ和它的导数当t→0时必须很快地衰减。对于频率局部化, 当ω→0必须充分快地衰减,并且 在ω=0的邻域中是低平的。 消失距 在ω=0的低平性依赖于ψ的变为零的矩量的数目。ψ的k 阶矩定又为 称小波ψ具有n 阶消失矩(即n 阶矩量变零),如果 或等价地

小波及连续小波变换 常用的基本小波 时频分析 连续小波变换的计算 小波变换的分类 (重新审视) 连续小波变换 小波及连续小波变换 常用的基本小波 时频分析 连续小波变换的计算 小波变换的分类

小波及连续小波变换 设函数 ,并且 ,即 ,则称 为一个基本小波或母小波。 (连续)小波函数 a和b的意义 性质: 线性性质 平移不变性 ……….

小波及连续小波变换 设函数 , 若 则称 为一个允许小波。 允许条件与 几乎是等价条件.

常用的基本小波 Haar小波

常用的基本小波 2. Daubechies小波 D4尺度函数与小波 D6尺度函数与小波

常用的基本小波 3、双正交小波 双正交B样条小波(5-3)、 (9-7)小波滤波器 bior2.2, bior4.4 (7-5)小波滤波器:

常用的基本小波 4. Morlet小波 Morlet小波不存在尺度函数; 快速衰减但非紧支撑. Morlet小波是Gabor 小波的特例。

常用的基本小波 5. 高斯小波 这是高斯函数的一阶导数,在信号与图象的边缘提取中具有重要的应用。 主要应用于阶梯型边界的提取。 5. 高斯小波 这是高斯函数的一阶导数,在信号与图象的边缘提取中具有重要的应用。 主要应用于阶梯型边界的提取。 特性: 指数级衰减,非紧支撑;具有非常好的时间频率局部化; 关于0轴反对称。

常用的基本小波 6. Marr小波 (也叫墨西哥草帽小波) 这是高斯函数的二阶导数,在信号与图象的边缘提取中具有重要的应用。 主要应用于屋脊型边界和Dirac边缘的提取。 特性: 指数级衰减,非紧支撑;具有非常好的时间频率局部化; 关于0轴对称。

常用的基本小波 7. Meyer小波 它的小波函数与尺度函数都是在频域中进行定义的。具体定义如下:

常用的基本小波 8. Shannon小波 在时域,Shannon小波是无限次可微的,具有无穷阶消失矩,不是紧支的,具有渐近衰减性但较缓慢;在频域,Shannon小波是频率带限函数,具有好的局部化特性。

常用的基本小波 9. Battle-Lemarie样条小波 Battle-Lemarie线性样条小波及其频域函数的图形

时频分析 1. Fourier变换 Fourier变换没有反映出随时间变换的频率,也就是说,对于频域中的某一频率,我们不知道这个频率是在什么时候产生的。因此,Fourier分析缺乏信号的局部化分析能力 。 2. 短时Fourier变换 短时Fourier变换的基本思想是:把信号划分成许多小的时间间隔,用Fourier变换分析每个时间间隔,以便确定在该时间间隔内的频谱信息。

窗口Fourier变换 非平凡函数 称为窗函数, 如果 窗口Fourier变换: 大致反映了 在时刻 b、频率为 的"信号成分"的相对含量。 通常我们用 作为窗函数 的宽度的度量。 窗口Fourier变换: 大致反映了 在时刻 b、频率为 的"信号成分"的相对含量。

窗口Fourier变换 给出了 在 的时间窗 内的局部化信息。

短时Fourier变换 若 及其Fourier变换 都是窗口函数 ,则称 为短时Fourier变换。 特别地,当窗口函数取Gaussian函数时, 相应的短时Fourier变换称为Gabor变换。 同时给出了 在时间窗 和频率窗 内的局部化信息。 时间-频率窗 的特性:不变的宽度 和固定的窗面积 测不准原理: 应用上的局限性:不太适合分析非平稳信号。

小波时频分析 小波分析能够提供一个随频率改变的时间-频率窗口。 假设 是任一基本小波,并且 与 都是窗函数, 它们的中心 与半径分别为 和 不妨设 和尺度 a都是正数。 , , 。 给出了 在时间窗 内的局部化信息。 给出了 在频域窗 内的局部化信息。

小波时频分析 若用 作为频率变量 内的局部化信息, 即小波变换具有时—频局部化特征。 窗宽: 面积: 的宽度是 宽度的 倍. 检测信号 ,则 给出了信号 在时间—频率平面( 平面)中一个矩形的时间—频率窗 内的局部化信息, 即小波变换具有时—频局部化特征。 窗宽: 面积: 的宽度是 宽度的 倍. 检测信号 的高频成分需用 具有比较小的 的分析小波 . 这时时间窗会自动 变窄,并在高频区域对信号进行细节分析.

各种变换的比较 小波变换的特性 Fourier变换的特性 分解种类:时间-尺度或时间-频率  分解种类: 频率 分析函数:具有固定震荡次数的时间有限的波。 小波函数的伸缩改变其窗口大小。 变量: 尺度,小波的位置 信息:窄的小波提供好的时间局部化及差的频率 局部化,宽的小波提供好的频率局部化 及差的时间局部化。 适应场合:非平稳信号 Fourier变换的特性  分解种类: 频率  分析函数: 正弦函数,余弦函数  变量: 频率  信息: 组成信号的频率 适应场合: 平稳信号  算法复杂度: 短时Fourier变换的特性 分解种类:时间-频率 分析函数:由三角震荡函数复合而成的时间有限的波 变量:频率,窗口的位置 信息: 窗口越小,时间局部化越好,其结果是滤掉低频成分; 窗口越大,频率局部化越好, 此时时间局部化较差. 适应场合:次稳定信号

连续小波变换的计算 数值近似积分法、快速算法(包括Mellin算法,斜交投影算法等) 在Matlab小波工具箱中,用cwt()函数计算连续小波变换。 连续小波变换的结果的显示方式: 灰度表示,三维表示

连续小波变换与离散小波变换在分析信号时的优缺点 2, 4, 8, 16 , 32 1,2,…, 32

小波变换的分类 中 离散小波及离散(参数)小波变换: 二进小波及二进小波变换 三个变量均为连续变量, 通过对它们施加不同的 离散化条件对小波及小波变换进行分类。下面介绍两种最重要的分类: 离散小波及离散(参数)小波变换: 二进小波及二进小波变换 只对a,b离散化 : 只对a离散化

离散小波及离散(参数)小波变换 令参数 , ,其中 ,则离散(参数)小波为: 在这种情况下,常用 记 ,即 相应于离散小波 的离散(参数)小波变换为: 重构问题: 在满足什么条件下,可以由离散小波变换 重构原信号? 可以验证,离散(参数)小波变换不具有平移不变性(习题6.4)。

离散小波及离散(参数)小波变换的进一步讨论 尺度离散化: 实际工作中最常见的情况是,将尺度 a按照二进尺度离散化,此时a 取值为 位移离散化: 当a=2-J (也就是j =J时),b可以某一基本间隔b0做均匀采样. b0应适当选择使信息仍能覆盖全b轴而不丢失(如不低于Nyquist采样率). 每经过一次小波变换, 其采样间隔扩大一倍,由此可见此时a-b平面内的采样点如下图所示.

离散小波及离散(参数)小波变换的进一步讨论 即对于分辨率j, b以采样间隔1/2jb0做均匀采样.此时, 变为 ,为简化书写,通常认为b0=1, 也就是把b轴用b0加 以归一.并记

二进小波及二进小波变换 在连续小波变换中,令参数 ,而参数b仍取连续值. , 则有二进小波: 这时, 的二进小波变换定义为: 重构问题: 在满足什么条件下,可以由二进小波变换 重构原信号? 重要性质: 二进小波变换仍具有连续小波变换的平移不变性 .