恰当方程(全微分方程) 一、概念 二、全微分方程的解法.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
第三节 一、格林公式 二、平面上曲线积分与路径无关的 等价条件 机动 目录 上页 下页 返回 结束 格林公式及其应用 第十一章 三、全微分方程.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
Company LOGO 第四章 不定积分 § 4.1 不定积分的概念与性质. 2 第一节 不定积分的概念与性质 一、不定积分概念 三、基本积分公式 二、不定积分的性质.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
积 分 的 应 用 不定积分的应用 定积分的应用 第四章 微分方程 不定积分的应用 第 一 节第 一 节 学习重点 微分方程的概念 一阶微分方程的求解.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
一、可分离变量的微分方程 可分离变量的微分方程. 解法 为微分方程的解. 分离变量法 §2 一阶常微分方程.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
经济数学 第四章 不定积分. 4.1 不定积分的概念与性质 4.2 不定积分的性质 4.3 不定积分的换元积分法 4.4 不定积分的分部积分法.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
代数方程总复习 五十四中学 苗 伟.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
5.3 二阶微分方程 主要内容 1.可降阶的二阶微分方程 2.二阶常系数线性微分方程.
第三章 函数逼近 — 最佳平方逼近.
第十章 第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的 等价条件 机动 目录 上页 下页 返回 结束.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或. 一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
复习 - 对坐标的曲线积分 1. 定义 2. 对坐标的曲线积分必须注意积分弧段的方向! L- 表示 L 的反向弧.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积 四、 小结.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
作业 P158 习题 2 1(2)(4) (5). 2(1). 预习 P156— /5/2.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
格林公式及其应用 姓名 学号 班级 兰浩 级数学与应用数学.
5.2.1 变量可分离的微分方程 形如 的微分方程成为变量可 分离的微分方程. 解法 分离变量法 5.2 一阶微分方程(80)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

恰当方程(全微分方程) 一、概念 二、全微分方程的解法

定义: 若有全微分形式 则 称为全微分方程。 通解则为 (C为任意常数)。 例1: 方程 是否为全微分方程? 解: 所以是全微分方程. 一、概念 定义: 若有全微分形式 则 称为全微分方程。 通解则为 (C为任意常数)。 例1: 方程 是否为全微分方程? 解: 所以是全微分方程.

问题: (1)如何判断全微分方程? (2)如何求解全微分方程? (3)如何转化为全微分方程? 定理1 设函数 和 在一个矩形区域 中连续且有连续的一阶偏导数,则 是全微分方程 证明: (1)证明必要性 因为 是全微分方程,

则存在原函数 ,使得              所以                     将以上二式分别对 求偏导数,得到 又因为 偏导数连续,              所以                                  ,即                   

(2)证明充分性 设 ,求一个二元函数 使它满足 这里 即 由第一个等式,应有 代入第二个等式,应有

因此 ,则 因此可以取 此时 这里由于 ,故曲线积分与路径无关。因此

二、全微分方程的解法 (1) 线积分法: 或 (2) 偏积分法 第一个等式对 积分

代入第二个等式求 ,即可得 (3)凑微分法 直接凑微分得 例2:验证方程 是全微分方程,并求它的通解。 解: 由于

所以方程为全微分方程。 (1) 线积分法: 故通解为

(2) 偏积分法: 假设所求全微分函数为 ,则有 代入可得 因此 从而 即

(3) 凑微分法: 由于 根据二元函数微分的经验,原方程可写为 方程的通解为:

例3:验证方程 是全微分方程,并求它的通解。 解:   由于 所以方程为全微分方程。 (1) 线积分法:

故通解为 (2) 偏积分法: 假设所求全微分函数为 ,则有 所以 从而 即

(3) 凑微分法: 根据二元函数微分的经验,原方程可写为 方程的通解为: 练习:验证方程 是全微分方程,并求它的通解。 方程的通解为:

积分因子法 一、概念 二、积分因子的求法

) , ( ¹ y x m ) , ( y x m 一、定义: 连续可微函数,使方程 ) , ( = m + dy y x Q dx P ) , ( ¹ y x m 连续可微函数,使方程 ) , ( = m + dy y x Q dx P 成为全 微分方程 则称 ) , ( y x m 为方程的 积分因子 . . 例1 验证 是方程 的积分因子,并求方程的通解。 解: 是全微分方程。 方程通解为

二、积分因子的求法 1.公式法: (两边同除 ) 求解不容易 特殊地: a. 当 只与 有关时,

b. 当 只与 有关时,

2.观察法: 凭观察凑微分得到 常见的全微分表达式

可选用的积分因子有 可选用的积分因子有 一般可选用的积分因子有 等。

例2 的通解 求微分方程 . 解 1.公式法: 则原方程成为 原方程的通解为

2.观察法: 分组求积分因子的思想。 将方程左端重新组合,有 可选用的积分因子有 可选用的积分因子有 因此取积分因子为 原方程的通解为

练习 求微分方程 的通解。