第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
成才之路 · 数学 人教A版 · 选修2-2 路漫漫其修远兮 吾将上下而求索.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第二节 微积分基本公式 一, 引例 前面我们已经研究了定积分的定义,利用定义求定积分很不方便 本讲介绍计前算定积分的方法。
第一章 函数与极限.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第二节 柯西积分定理 一、单连通区域的柯西积分定理 二、复函数的牛顿-莱布尼兹公式 三、多连通区域上的柯西积分定理.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
导数的基本运算.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
高等数学 西华大学应用数学系朱雯.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
第三部分 积分(不定积分 + 定积分) 在课程简介中已经谈到, 高等数学就是微积分(微分 + 积分). 第二部分已经学习了函数的导数和微分, 这一部分内容是“积分”. 由此可见,这一部分内容在本课程中的重要地位. 积分就是讨论导数的逆问题: 给定了函数f(x),哪些函数的导数就是f(x)? “积分”包括了不定积分和定积分,它们也是每个学习高等数学的人必须掌握的内容.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结

一、积分上限的函数及其导数 设函数 在区间 上连续,x为区间 上任意一点,则 在区间 上可积,即 在区间 上的积分 存在。这里字母x即出现在被积表达式中,是积分变量,又出现在积分限中,是积分上限。为避免混淆,把积分变量改用其它字母,如t,即改记为 。由于积分下限为定数a,上限x在区间 上变化,故定积分 的值随x的变化而变化,由函数定义知 是上限x的函数(称为变上限积分),如图6-10,记为 ,即 y a b O x 图6-10

定理1(变上限积分对上限的可导定理)设 在区间 上连续, 则函数 在区间 上可导,且其导数就是 ,即 证 取 充分小,使 ,由定积分的性质3和定积分中 值定理,得 其中 或 。于是,由导数定义和 的 连续性,得 即

本定理把导数和定积分这两个表面看似不相干的概念联系了起来,它表明:在某区间上连续的函数 ,其变上限积分 是的一个原函数。于是有 定理2(原函数存在定理) 若函数 在区间 上连续,则在该区间上, 的原函数存在。 例1 求(1) (2) (3) 解 (1) 是连续函数,由定理1得 (2) 设 ,由复合函数求导法则得

(3) 由定积分性质3,对任意常数a, 于是 例2 设 求 和 解 是由x的函数 和 相乘,由乘积求导的运算法则,得 由例1可见,变限积分是变限的函数,它是一类构造形式全新的函数。变限积分对变限的导数是一类新型函数的求导问题,完全可以与求导有关的内容相结合,如利用导数的运算法则,洛必达法则求极限,判别导数的单调性,求极值等等。下面再看几个例子,可从中得到启发。

(2)当 时,该极限是“ ”型未定式,可以用洛必达法则 例3 求下列极限: (a>0为常数) 解 (1)当 时, 因此该极限是“ ”型未定 式,可以用洛必达法则求极限,有 (2)当 时,该极限是“ ”型未定式,可以用洛必达法则 求极限,有

例4讨论函数 在区间 上的单调性 与最小值。 证 ,故函数 在 单调增加,所 以 ,最小值为 ,此时,变上限函数的上限变 为0,即

二、牛顿-莱布尼茨(Newton-Leibniz)公式 定理3 设函数 在区间 上连续,且 是它在该区间上的 一个原函数,则有 证 有定理1知 是 的一个原函数,从本定理条件知 也是 的一个原函数,上述两个原函数之间相差一个常 数 ,即

用x=a代入上式两边,得 再用x=b代入前式两边,得 为了书写方便,上式通常表示为

上式称为牛顿-莱布尼茨公式,这是一个非常重要的共识,揭 示了定积分与不定积分之间的内在联系。公式表明:定积分计算 不必用和式的极限,而是利用不定积分来计算,在定理3的条件 下,函数 在区间 上的定积分得值等于 任意一个原函 数 在区间两个端点处的函数值之差 ,是定积分计 算的基本方法,它为微积分的创立和发展奠定了基础。 本章开头,由曲线 ,直线x=0,x=1和y=0所围的曲边梯形的 面积A,现在可以轻而易举地得到:

例5 验证 证 易知, 是 的一个原函数,由牛顿-莱布 尼茨公式得 于是 例6 求 解 在区间[0,1/2]上连续,且 是 的一个原函数,由牛顿-莱布尼茨公式得

例7 求 解

牛顿-莱布尼茨公式指明了定积分与不定积分的联系,即 当计算不定积分用到凑微分方法时,计算定积分的过程可表达为。 例8 求 解

例9 设 求 解 由定积分的性质3,有 例10 求 解

三、小结 1.积分上限函数 2.积分上限函数的导数 3.微积分基本公式 牛顿-莱布尼茨公式沟通了微分学与积分学之间的关系.

练 习 题6.2

练习题6.2答案