第三节 第十章 三重积分 一、三重积分的概念 二、三重积分的计算.

Slides:



Advertisements
Similar presentations
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
Advertisements

目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
第六章 空间解析几何与向量代数 第一节 空间直角坐标系列 第二节 向量及其线性运算 第三节 向量的坐标 第四节 向量的数量积与向量积
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
§7.6 二重积分 二重积分的概念 二重积分的性质 二重积分的计算 小结 思考与练习.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
高等数学 西华大学应用数学系朱雯.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
作业 P152 习题 复习:P 预习:P /5/2.
定积分应用 欧阳顺湘 北京师范大学珠海分校.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
§6 三重积分 一、三重积分的定义 二、直角坐标系下的计算 三、三重积分换元法 四、柱面坐标系下的计算 五、球面坐标系下的计算.
§5 三 重 积 分 一、 三重积分的概念 二、 化三重积分为累次积分 三、 三重积分换元法
二重积分的换元 主讲人:汪凤贞.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四节 第十章 重积分的应用 一、立体体积 二、曲面的面积 三、物体的质心 四、物体的转动惯量 五、物体的引力.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

第三节 第十章 三重积分 一、三重积分的概念 二、三重积分的计算

一、三重积分的概念 引例: 设在空间有限闭区域  内分布着某种不均匀的 物质, 密度函数为 求分布在  内的物质的 质量 M . 解决方法: 类似二重积分解决问题的思想, 采用 “大化小, 常代变, 近似和, 求极限”  可得

定义. 设 若对  作任意分割: 任意取点 下列“乘 积和式” 极限 存在, 则称此极限为函数 在 上的三重积分. 称为体积元素, 定义. 设 若对  作任意分割: 任意取点 下列“乘 积和式” 极限 记作 存在, 则称此极限为函数 在 上的三重积分. 称为体积元素, 在直角坐标系下常写作 性质: 三重积分的性质与二重积分相似. 例如 中值定理. 在有界闭域  上连续, V 为 的 体积, 则存在 使得

二、三重积分的计算 1. 利用直角坐标计算三重积分 先假设连续函数 并将它看作某物体 的密度函数 , 通过计算该物体的质量引出下列各计算 方法: 方法1 . 投影法 (“先一后二”) 方法2 . 截面法 (“先二后一”) 方法3 . 三次积分法 最后, 推广到一般可积函数的积分计算.

方法1. 投影法 (“先一后二” ) 细长柱体微元的质量为 该物体的质量为 微元线密度≈ 记作

方法2. 截面法 (“先二后一”) 为底, d z 为高的柱形薄片质量为 该物体的质量为 面密度≈ 记作

方法3. 三次积分法 设区域 利用投影法结果 , 把二重积分化成二次积分即得: 投影法

当被积函数在积分域上变号时, 因为 均为为非负函数 根据重积分性质仍可用前面介绍的方法计算.

小结: 三重积分的计算方法 方法1. “先一后二” 方法2. “先二后一” 方法3. “三次积分” 三种方法(包含12种形式)各有特点, 具体计算时应根据 被积函数及积分域的特点灵活选择.

例1. 计算三重积分 其中 为三个坐标 面及平面 所围成的闭区域 . 解:

例2. 计算三重积分 解: 用“先二后一 ”

2. 利用柱坐标计算三重积分 就称为点M 的柱坐标. 直角坐标与柱面坐标的关系: 坐标面分别为 圆柱面 半平面 平面

如图所示, 在柱面坐标系中体积元素为 因此 其中 适用范围: 1) 积分域表面用柱面坐标表示时方程简单 ; 2) 被积函数用柱面坐标表示时变量互相分离.

其中 为 例3. 计算三重积分 由柱面 及平面 所 围成半圆柱体. 解: 在柱面坐标系下

例4. 计算三重积分 其中 由抛物面 与平面 所围成 . 解: 在柱面坐标系下 原式 =

3. 利用球坐标计算三重积分 就称为点M 的球坐标. 直角坐标与球面坐标的关系 坐标面分别为 球面 半平面 锥面

如图所示, 在球面坐标系中体积元素为 因此有 其中 适用范围: 1) 积分域表面用球面坐标表示时方程简单; 2) 被积函数用球面坐标表示时变量互相分离.

例5. 计算三重积分 其中 与球面 所围立体. 解: 在球面坐标系下

例6.求曲面 所围立体体积. 解: 由曲面方程可知, 立体位于xOy面上部, 且关于 xOz yOz面对称, 并与xOy面相切, 故在球坐标系下所围立体为 利用对称性, 所求立体体积为

内容小结 坐标系 体积元素 适用情况 直角坐标系 积分区域多由坐标面 围成 ; 柱面坐标系 被积函数形式简洁, 或 球面坐标系 变量可分离. 坐标系 体积元素 适用情况 直角坐标系 柱面坐标系 球面坐标系 积分区域多由坐标面 围成 ; 被积函数形式简洁, 或 变量可分离. * 说明: 三重积分也有类似二重积分的换元积分公式: 对应雅可比行列式为

思考与练习 1. 将 用三次积分表示, 其中 由 六个平面 所 围成 , 提示:

2. 设 计算 提示: 利用对称性 原式 = 奇函数

3. 设 由锥面 和球面 所围成 , 计算 提示: 利用对称性 用球坐标

作业 P162 1(2),(3),(4); 4; 5; 7; 8; 9 (2); *10 (2) ; 11 (1), *(4) 第四节

备用题 1. 计算 其中 由 所围成. 分析:若用“先二后一”, 则有 计算较繁! 采用“三次积分”较好.

解: 所围, 故可 表为 思考: 若被积函数为 f ( y ) 时, 如何计算简便?

2. 计算 其中 解: 利用对称性