微积分基本定理 2017/9/9.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第二十六讲 定积分的基本定理.
第一节 定积分的概念与性质 一、引入定积分概念的实例 二、定积分的概念 三、定积分的几何意义 四、定积分的性质.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
成才之路 · 数学 人教A版 · 选修2-2 路漫漫其修远兮 吾将上下而求索.
9.1 数值积分基本方法 9.2 梯形积分 9.3 Simpson积分 9.4 Newton-Cotes积分 9.5 Romberg积分
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
4.5定积分的计算 主要内容: 1.牛顿—莱布尼兹公式. 2.定积分的换元积分法. 3.定积分的分部积分法.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第四模块 函数的积分学 第九节 微元法与定积分的应用 一 定积分的微元法 二 平面图形的面积 三 函数的平均值.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
高等数学 西华大学应用数学系朱雯.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第一章 导数及其应用 函数的平均变化率 瞬时速度与导数.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
实数与向量的积.
线段的有关计算.
第4讲 定积分及其应用举例 考纲要求 考纲研读 定积分与微积分基本定理 1.了解定积分的实际背景,了解 定积分的基本思想,了解定积分
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
定积分应用 欧阳顺湘 北京师范大学珠海分校.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第六章 数值积分与数值微分.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
导数及其应用教材分析.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
函数与导数 临猗中学 陶建厂.
Presentation transcript:

微积分基本定理 2017/9/9

知识回顾: 微积分在几何上有两个基本问题 1.如何确定曲线上一点处切线的斜率; 2.如何求曲线下方“曲线梯形”的面积。 曲线? o y x x y 直线 曲线? 几条线段连成的折线 2017/9/9

用 “以直代曲”解决问题的思想和具体操作过程: 分割 以直代曲 作和 逼近 2017/9/9

求由连续曲线y=f(x)对应的曲边梯形面积的方法 (1)分割:在区间[a,b]上等间隔地插入n-1个点,将它等分成 n个小区间: 每个小区间宽度⊿x (2)以直代曲:任取xi[xi-1, xi],第i个小曲边梯形的面积用高为f(xi), 宽为Dx的小矩形面积f(xi)Dx近似地去代替. y=f(x) x y O b a (3) 作和:取n个小矩形面积的和作为曲边梯形面积S的近似值: (4)逼近:所求曲边梯形的面积S为 xi-1 xi xi 2017/9/9

定积分的定义: 一般地,设函数f(x)在区间[a,b]上有定义,将区间[a,b]等分成n个小区间,每个小区的长度为 ,在每个小区间上取一点,依次为x1,x2,…….xi,….xn,作和 如果 无限趋近于0时,Sn无限趋近于常数S,那么称常数S为函数f(x)在区间[a,b]上的定积分,记作: . 2017/9/9

问题情景 由定积分的定义可以计算 , 但比较麻烦(四步曲),有没有更加简便有效的方法求定积分呢? 由定积分的定义可以计算 , 但比较麻烦(四步曲),有没有更加简便有效的方法求定积分呢? (分割---以直代曲----求和------逼近) 2017/9/9

对于一般函数 ,设 是否也有 我们就找到了用 的原函数 若上式成立, )的数值差 (即满足 在 上的定积分的方法。 来计算 2017/9/9

牛顿—莱布尼茨公式 定理 (微积分基本定理) 记: 则: f(x)是F(x)的导函数 F(x) 是f(x)的原函数 2017/9/9

例1:计算下列定积分 找出f(x)的原函数是关健 解:(1)取 解:(2)取 2017/9/9

解:(3)∵ 2017/9/9

2017/9/9

例2:计算下列定积分 2017/9/9

例2:计算下列定积分 2017/9/9

2017/9/9

练习: 2017/9/9

练习: 2017/9/9

练习: 2017/9/9

小结 微积分基本公式 牛顿-莱布尼茨公式沟通了导数与定积分之间的关系. 2017/9/9