一、无穷小的比较 例如, 观察各极限 不可比. 极限不同, 反映了趋向于零的“快慢”程度不同..

Slides:



Advertisements
Similar presentations
第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
Advertisements

高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量. 再例如, 既容易计算又是较好的近似值 问题 : 这个线性函数 ( 改变量的主要部分 ) 是否 所有函数的改变量都有 ? 它是什么 ? 如何求 ?
函数与极限 导数与微分 微分中值定理与导数的应用 不定积分 定积分及其应用 级数. 二、 连续与间断 一、 函数 三、 极限 函数与极限.
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
第十二章 第二节 一元函数 y = f (x) 的微分 机动 目录 上页 下页 返回 结束 对二元函数的全增量是否也有类似这样的性质? 全微分.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
第二讲:连续、导数、微分 1 函数的连续性 2 导数的概念 3 函数微分 (1) (2) (3)
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第一章 函数与极限.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第十八章 含参变量的反常积分 教学目标: 1°使学生掌握含参变量反常积分概念; 2°使学生学会用定义证明含参变量反常积分收敛性。
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
第一章 导数与微分 1.1 函数及其性质 1.2 极限 1.3 极限的性质与运算法则 1.4 两个重要极限 1.5 函数的连续性
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
计算机数学基础 主讲老师: 邓辉文.
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
高等数学 西华大学应用数学系朱雯.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第一章 函数与极限.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第九章 数项级数 §9.1 级数的收敛性 §9.2 正项级数 §9.3 一般项级数.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
函 数 连 续 的 概 念 淮南职业技术学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

一、无穷小的比较 例如, 观察各极限 不可比. 极限不同, 反映了趋向于零的“快慢”程度不同.

定义:

例如,

例1 解

证 必要性 充分性

意义:用等价无穷小可给出函数的近似表达式. 例如, 常用等价无穷小:

例2 解

二、等价无穷小代换 定理2(等价无穷小代换定理) 证

例3 解 若未定式的分子或分母为若干个因子的乘积,则可对其中的任意一个或几个无穷小因子作等价无穷小代换,而不会改变原式的极限.

例4 解 注意 不能滥用等价无穷小代换. 切记,只可对函数的因子作等价无穷小代换,对于代数和中各无穷小不能分别代换.

例5 错 解 解

例6 解

三、小结 1、无穷小的比较 2、等价无穷小的代换: 反映了同一过程中, 两无穷小趋于零的速度快慢, 但并不是所有的无穷小都可进行比较. 反映了同一过程中, 两无穷小趋于零的速度快慢, 但并不是所有的无穷小都可进行比较. 高(低)阶无穷小; 等价无穷小; 无穷小的阶. 2、等价无穷小的代换: 求极限的又一种方法, 注意适用条件.

思考题 任何两个无穷小都可以比较吗?

思考题解答 不能. 例当 时 都是无穷小量 但 不存在且不为无穷大 故当 时

练 习 题

练习题答案

第三讲 (一) 无穷小量(续) (二)连续函数 一、三个重要关系 二、无穷小量的比较 三、求极限举例 四、函数连续性的定义 2019/5/6

一、三个重要关系 1.(无穷小与无穷大) 2.(极限与无穷小) 2019/5/6

3.无穷大与无界函数 问题: 两个无穷小量的商是否为无穷小量? 2019/5/6

二、无穷小量的比较 定义: 2019/5/6

2019/5/6

2019/5/6

几个常用的等价无穷小量 2019/5/6

等价无穷小量的性质 性质1: 2019/5/6

性质2: 等价代换 2019/5/6

三、求极限举例 [例1] [解] 2019/5/6

[例2] [解] 2019/5/6

2019/5/6

[例3] [解] 2019/5/6

是 x 的 3 阶无穷小 讨论: 代数和不能代换! 2019/5/6

[例4] [解] 2019/5/6

[例5] [解] 2019/5/6

[例6] [解] 2019/5/6

[例7] [解] 2019/5/6

从而 或者 2019/5/6

连 续 函 数 2019/5/6

函数连续性的定义 函数的连续性描述函数的渐变性态, 在通常意义下,对函数连续性有三种 描述:  当自变量有微小变化时,因变量的 变化也是微小的;  自变量的微小变化不会引起因变量的 跳变;  连续函数的图形可以一笔画成,不断开. 2019/5/6

例如: 2019/5/6

2019/5/6

2019/5/6

2019/5/6

以上描述实质上是同意的反复,数学上要确切 地刻画函数连续性,必须用极限作定量地描述. (一)定义 定义1: 2019/5/6

[注意1] 以上三条中带本质性的是第二条,极限的存在性. [注意2] 2019/5/6

定义2: (函数在一点的单侧连续性) 2019/5/6

定义3: ( 函数在区间上的连续性) 2019/5/6

(二)间断点的分类 根据间断点的不同情况,可以分为三类: 1. 可去型间断点 可去型间断不是本质性的间断,可以重新 定义, 使其连续. 1. 可去型间断点 可去型间断不是本质性的间断,可以重新 定义, 使其连续. 2019/5/6

[例如] 2019/5/6

2. 第一类间断点 [例] 符号函数 2019/5/6

3. 第二类间断点 [例] 2019/5/6

五、函数连续性的基本性质 (一)连续性定义的等价形式: 2019/5/6

(二)连续函数的有界性: 2019/5/6

(三)连续函数的保号性: 2019/5/6

(四)连续函数的运算性质: 2019/5/6

(五) 关于反函数的连续性 (六)初等函数的连续性 初等函数在其定义区间上是连续的。 2019/5/6

非初等函数连续性问题举例 [解] 2019/5/6

2019/5/6

[解] 2019/5/6

2019/5/6