二重积分的换元 主讲人:汪凤贞.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
§4.2 第一换元积分法 课件制作 秦立春 引 例 第一换元积分法. §4.2 第一换元积分法 课件制作 秦立春 以上三式说明:积分公式中积分变可以是任意的字母公式仍然成立.
§5 微分. 一 问题的提出 1 面积问题 设有一边长为 的正方形 2 自由落体问题 二 微分的定义 1 定义.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
人的性别遗传 合肥市第四十九中学 丁 艳. 男女成对染色体排序图 1 、男性和女性各 23 对染色体有何异同 ? 哪 一对被称为性染色体 ? 2 、这两幅图中,哪幅 图显示的是男性的染色 体?哪幅图显示的是女 性染色体? 3 、图中哪条染色体是 Y 染色体?它与 X 染色体 在形态上的主要区别是.
1、一般地说,在生物的体细胞中, 和 都是成对存在的。
辨性别 A B. 辨性别 A B 第三节人类染色体与性别决定 昌邑市龙池初中 杨伟红 学习目标 1.理解人的染色体组成和传递规律。 2.解释人类性别决定的原理。 3.通过探究活动,解读数据了解生男生女的比例。
色 弱 與 色 盲.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
§5 微积分学基本定理 本节将介绍微积分学基本定理, 并用以证明连续函数的原函数的存在性. 在此基础上又可导出定积分的换元积分法与分部积分法. 一、变限积分与原函数的存在性 二、换元积分法与分部积分法 三、泰勒公式的积分型余项 返回.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第六章 微分与不定积分 第三节 不定积分.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
宠物之家 我的宠物性别? 雌(♀) or 雄(♂) 第一阶段:我的宠物我做主 第二阶段:宠物“相亲记” 第三阶段:家族诞生
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第三节 第十章 三重积分 一、三重积分的概念 二、三重积分的计算.
4.2.1 原函数存在定理 1、变速直线运动问题 变速直线运动中路程为 另一方面这段路程可表示为 4.2 微积分基本定理(79)
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
作业 P158 习题 2 1(2)(4) (5). 2(1). 预习 P156— /5/2.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
§6 三重积分 一、三重积分的定义 二、直角坐标系下的计算 三、三重积分换元法 四、柱面坐标系下的计算 五、球面坐标系下的计算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5 三 重 积 分 一、 三重积分的概念 二、 化三重积分为累次积分 三、 三重积分换元法
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第八章 服務部門成本分攤.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
Presentation transcript:

二重积分的换元 主讲人:汪凤贞

六、二重积分的换元(变换) 计算二重积分时,由于某些几分区域的边界曲 线比较复杂。仅仅将二重积分化为累次积分并不求 出二重积分,就是定积分中的换元积分公式。在二 重积分计算中也有相应的换元法则。 定理3 若((x,y)在有界闭区域R连续,函数组 x=x(u,v),y =y(x,y)将uv坐标面上的区域R一 对一变换成xy坐标面上的区域R且x=x( u,v),

y=y(u,v)在 R’上存在连续偏导数。(u,v ) R, 有 则:

证:因为f(x,y)在R 连续。所以可积。用任意分法T将 R分成n个小区域:R1,R2 ,…,Rn。又由于复合函数的连续性知 f(x,(u,v),y(u,v) )在R’ 连续,所以可积 。设其面积为 则根据函数行列式的几何性质,

又由已知得 于是积分和

再根据隐函数组确定的反函数组存在定理 知函数组 x=x(u,v), y=y(u,v)在R上存在有连续偏导数。反函数组u=u(x,y), v=v(x,y) 由连续知必一致连续。 因此当分法T的细度||T|| 0时,分法T`的细度||T`||也趋于0。

对(*)式两边取极限||T||-0时,有||T`||-0。 故有:

例1 求两条抛物线 与两条直线y= x,y= x 所围成的区域R的面积S。其中0<m<n,0< < 矩形域R‘: y2=nx y2=mx x y o R v u

解:根据二重积分的性质知:S=    作变换:u= v=y/x 则此函数组将xy做表面上R变换成uv平面上的 矩形域R‘:m<=u<=n; <=v<=

根据定理3: 例2 : 证明

其中R:|x|+|Y|<=1 证明:如图所示,R是由直线X+Y=1。X+Y=-1, X-Y=1,X-Y=-1所组成。作变换得:u=x+y, v=x-y。则此函数组将xy面上的正方形R: |x|+|y|<=1,变换成uv面上的正方形R`: -1<=u<=1,-1<=v<=1。且 y y 1 x o x o -1 1 -1

两点说明: 1、若变换T:X=X(u,v),Y=Y(u,v)。在R` 的个别点上有J=0。则结论依然成立。 2、事实上,若 P`(u0,v0) R`。使J(u0,v0)=0。 而在其他点上J=0。则在R`上作面积为 的 小邻域U`(P`, )。则根据变换T,在XY面上 也得到面积为 的小邻域U(p, )。