导数及其应用教材分析.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
Yunnan University Chapt 5. 微分学基本定理及其应用 导 数导 数 函数性质 中值定理 §1. 中值定理 §2. 泰勒公式 §3. 函数的升降、凸性与极值 §4. 平面曲线的曲率 §5. 待定型.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第二节 微积分的基本定理 在上节中,我们看到用和式极限计算定积分相当繁难。本节通过揭示定积分与原函数间的关系,导出定积分的基本计算公式:牛顿—莱布尼茨公式。 一、 变上限定积分 由定积分定义知,定积分的大小仅与被积函数 和积分区间 有关。当我们固定 和积分下限a时,显然,定积分的大小会随着积分上限b的变化而变化。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第二节 微积分基本定理 一、积分上限的函数及其导数 二、牛顿-莱布尼茨公式 三、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
定积分的概念与性质 变上限积分的概念与定理 牛顿-莱布尼茨公式 讨论或证明变上限积分的特性
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
计算机数学基础 主讲老师: 邓辉文.
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
2.1.2 指数函数及其性质.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第一章 导数及其应用 函数的平均变化率 瞬时速度与导数.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
1.5 函数y=Asin(ωx+φ)的图象.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 一元函数的变化性态(III) 北京师范大学数学学院 授课教师:刘永平.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
高中数学必修四 第一章 1.4.2正弦函数余弦函数的性质(2).
1.4.3正切函数的图象及性质.
1.4.3正切函数的图象及性质.
3.3.2《导数在研究函数 中的应用-极值》.
数学第三册(选修I) 第二章《导数》 导数的应用.
§3.7函数的单调性 y x.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
欢迎各位领导同仁 莅临指导!.
§3.1函数的单调性 y x.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
幂 函 数.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
3.3 导数在研究函数中的应用   3.3.1 函数的单调性与导数.
Presentation transcript:

导数及其应用教材分析

教材的地位 研究近代科学技术必不可少的工具 高中数学知识----函数内容的继续

内容上的变化 删去极限 增加定积分与微积分基本定理

要求上的变化 突出探索性,注重本质

要求上的变化 突出应用性,淡化计算

要求上的变化 突出直观性,弱化证明

数列极限 函数极 限 函数连续性 导 数 导数的应用

情境:爬山

情境:爬山

情境:房价走势 33100 21200 7200 5600

1运动员在这段时间内是静止的吗? 2你认为用平均速度描述运动员运动 状态有什么问题吗?

(1)如何求运动员在某一个时刻的瞬时速度? (2)如何计算某一个时刻附近,这段时间间隔内的平均速度呢? (3)当时间变量 趋近于0时,平均速度 有怎样的变化趋势?

时间区间/s 时间间隔/s 平均速度/(m·s-1) 时间区间/s 时间间隔/s 平均速度/(m·s-1) [2, 2.1] 0.1 [2, 2.1] 0.1 -13.59 [2, 2.01] 0.01 -13.149 [2, 2.001] 0.001 -13.104 9 [2, 2.000 1] 0.000 1 -13.100 49 [2, 2.000 01] 0.000 01 -13.100 049 …… …… …… 时间区间/s 时间间隔/s 平均速度/(m·s-1) [1.9, 2] 0.1 -12.61 [1.99, 2] 0.01 -13.051 [1.999, 2] 0.001 -13.095 1 [1.999 9, 2] 0.000 1 -13.099 51 [1.999 99, 2] 0.000 01 -13.099 951 …… …… ……

微积分的创始人 牛顿 从力学的角度 莱布尼茨 从几何学的角度

微积分的创立 一 二 四类问题 三 四 第一类问题是研究运动的时候直接出现的,也就是求瞬时速度的问题 第二类问题是求曲线的切线的问题 第三类问题是求函数的最大值和最小值问题 第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力 四

注重数学思想与方法的教学 1.函数与方程的思想:

注重数学思想与方法的教学 2.分类讨论的思想

注重数学思想与方法的教学 3.转化与化归的思想

谢谢

例1. 如右图,设有定圆C和定点O, 当l 从l0 开始在平面上绕点O匀速 旋转(旋转角度不超过90o)时,它 扫过的圆内阴影部分的面积 S 是时 间 t 的函数,它的图象大致是下列 四种情况中的哪一种?

设 是函数 的导函数, 的图象如 右图所示,则 的图象最有可能的是( ) x y o 1 2 (A) (B) (C) (D) 例2.

例3:讨论函数 的单调性

思考1: 是函数 为增函数的什么条件?

(1)若函数 在 上为增函数, 的取值范围. 上为减函数,求 的取值范围; (2)若函数 思考2: 求

3.在定义域内解不等式 ,求出函数单增区间; 在定义域内解不等式 ,求出函数单减区间. 小结: 利用导数判断函数的单调性: 1.确定函数 的定义域; 2.求出函数的导数; 3.在定义域内解不等式 ,求出函数单增区间; 在定义域内解不等式 ,求出函数单减区间.